
Chapter 1: Installa/on

So	you	think	you’re	ready	to	install	Neovim?	Actually,	you	still	have	one	decision	to	make.	

Neovim	can	run	in	a	lot	of	different	contexts	(You	can	even	run	it	inside	VS	Code)!	By	
default	it	is	a	terminal	program,	but	there	are	also	tons	of	GUIs	available.	I	have	tried	almost	
all	of	them,	and,	honestly,	I	don’t	think	they	have	any	inherent	advantage	over	running	
Neovim	directly	in	the	terminal.	

We	will	discuss	hooking	up	NeoVim	to	the	Neovide	GUI	much	later	in	the	book,	but	for	
starting	out,	I	recommend	running	NeoVim	in	a	terminal.	A	very	good	terminal,	to	be	
speciKic.	

Choosing a Terminal

To	get	the	best	Vim	editing	experience,	you	want	a	GPU	accelerated	terminal.	What’s	that	
mean?	Basically	that	you	will	be	using	the	chip	designed	to	render	photo-realistic	video	for	
rendering	source	code.	Makes	as	much	sense	is	using	it	for	AI,	right?	

You	will	need	to	do	your	own	research	on	the	following	options,	so	ask	your	favourite	
search	engine	or	the	AI	Chat	bot	de	jour	to	help	you	decide:	

• Kitty	Terminal	is	my	personal	preference.	I	Kind	it	well-documented,	easy	to	
conKigure	and	has	all	the	features	I	need.	

• Alacritty	is	probably	the	winner	for	raw	speed,	but	conKiguration	is	awkward,	and	it	
is	less	featureful.	

• Wezterm	has	some	very	nifty	features,	but	I	found	the	documentation	to	be	lacking	
and	had	trouble	getting	some	aspects	to	work.	

• Windows	Terminal,	if	you	are	a	Windows	user,	does	claim	to	be	GPU	accelerated,	
though	I	found	that	Neovim	was	sometimes	unresponsive	in	it.	

• If	you’re	already	on	the	Warp	Terminal	train	and	you	just	can’t	live	without	it,	
Neovim	will	work	inside	it.	I	found	the	experience	a	little	choppy,	and	I	didn’t	enjoy	
the	look	and	feel	of	Warp	(or	the	fact	that	I	needed	to	sign	in	to	use	it)	

So	install	one	or	more	of	those	until	you	Kind	one	that	you	like.	You	can	use	other	terminal	
emulators	if	you	want	to.	You	probably	won’t	even	notice	that	the	experience	is	inferior,	but	
I	can	promise	that	if	you	later	switch	to	a	GPU-accelerated	experience,	you’ll	notice	the	
improvement.	

https://sw.kovidgoyal.net/kitty/
https://alacritty.org
https://wezfurlong.org/wezterm/index.html
https://github.com/microsoft/terminal?tab=readme-ov-file
https://www.warp.dev

Se6ng Up Your Terminal Font

LazyVim	and	its	plugins	look	beautiful	in	a	terminal,	and	you	would	almost	not	believe	that	
they	are	not	a	GUI	application.	To	do	this,	they	depend	on	special	fonts	that	have	a	TON	of	
glyphs	for	coding	related	things.	Most	notably,	this	gives	you	access	to	icons	representing	
the	type	of	Kile	you	have	open,	but	also	provide	nice	frames	and	window-like	behaviour	in	
the	terminal.	

To	get	the	best	LazyVim	experience,	you	will	need	to	install	one	of	these	special	fonts	and	
conKigure	your	terminal	to	use	it.	Indeed,	you	should	really	be	using	one	of	these	fonts	in	
your	terminal	even	if	you	aren’t	a	heavy	Neovim	user.	A	lot	of	modern	terminal	apps	
(there’s	a	phrase,	eh?)	look	better	if	you	have	them	installed.	

Visit	Nerd	Fonts	for	more	information	and	to	choose	a	font.	I	personally	use	the	VictorMono	
Nerd	Font	because	it	has	a	unique	typeface	for	the	italic	font	that	I	like	for	code	comment	
blocks.	

You	can	choose	from	many	of	the	most	popular	programming	fonts.	Downloading	and	
installing	them	is	very	much	operating	system	dependent,	so	I’ll	leave	the	Nerd	Fonts	
website	to	explain	it	to	you.	

Install Neovim

Installing	Neovim	is	generally	one	of	the	least	problematic	installs	you	will	encounter	as	
Neovim	works	pretty	much	anywhere	software	can	be	installed,	and	it	only	relies	on	
standard	system	dependencies.	The	chief	problem	is	that	no	matter	which	operating	system	
you	use,	you	are	spoiled	for	choice!	

You	can	visit	the	Neovim	home	page	and	click	the	“Install	Now”	button	to	get	the	latest	
instructions	for	your	operating	system	of	choice	(or	of	necessity)	from	the	Neovim	
developers.	

Which Version should I install?

Neovim	development	happens	at	a	super	fast	pace	compared	to	their	release	cycle,	so	it	is	
not	uncommon	for	folks	to	run	the	latest	nightly	build.	I	have	only	rarely	encountered	bugs	
in	builds	cut	from	the	master	branch	on	Github,	so	it’s	generally	safe.	I	usually	run	off	the	
latest	stable	release	when	it	comes	out,	and	then	when	some	new	plugin	update	says	
“here’s	a	cool	feature	if	you	use	Neovim	nightly,”	I’ll	install	the	latest	build	instead.	

I	suggest	starting	with	the	stable	version	of	Neovim	for	now,	which	at	time	of	writing	is	
0.9.5.	The	0.10	release	does	have	some	cool	features	that	LazyVim	leverages,	so	if	you	start	

https://nerdfonts.com
https://neovim.io/

to	get	as	excited	about	this	distro	as	I	am,	it	will	be	a	perfectly	natural	progression	to	switch	
to	the	pre-release.	

Windows

I	generally	recommend	using	the	Windows	Subsystem	for	Linux	(WSL)	and	doing	all	
development	in	there.	WSL	is	way	outside	the	scope	of	this	book,	but	it	is	well-documented	
by	Microsoft	and	many	online	tutorials.	Once	you	have	chosen	a	WSL-compatible	Linux	
distribution,	set	it	up,	and	have	it	running	in	your	chosen	terminal,	you	can	install	Neovim	
using	the	Linux	instructions	below.	

If	you	have	a	reason	to—or	preference	for—developing	on	native	Windows,	the	easiest	
thing	to	do	is	grab	the	MSI	installer	from	the	Releases	section	of	the	neovim/neovim	
repository	on	GitHub.	

If	you	already	use	Winget,	Chocolatey,	or	Scoop	to	manage	packages	on	your	Windows	
machine,	there	is	a	Neovim	package	in	each	of	them.	

Note	that	if	you	use	Windows	without	WSL,	you	will	need	to	install	a	C	compiler	in	order	to	
get	treesitter	support.	This	is	not	a	trivial	task.	It	is	documented	in	the	nvim-treesitter/
nvim-treesitter	GitHub	repo,	so	I	won’t	go	into	detail	here.	

MacOS

I	recommend	Kirst	installing	Homebrew	if	you	don’t	have	it	already	by	following	the	
instructions	at	brew.sh.	

Once	you	have	brew	up	and	running,	the	command	brew install neovim	will	instal	
Neovim.	

If	you	want	to	live	on	the	edge,	brew install --HEAD neovim	will	install	the	latest	
nightly	version	of	Neovim,	which	is	probably,	but	not	guaranteed	to	be,	stable.	

I	Kind	the	brew	experience	to	be	much	kinder	than	other	MacOS	installation	options	for	
Neovim,	so	if	you	aren’t	already	a	Homebrew	user,	I	strongly	suggest	exploring	setting	it	up.	
There	are	other	open	source	tools	that	you	will	want	to	install	as	we	get	deeper	into	the	
LazyVim	journey,	and	brew	will	be	the	easiest	way	to	get	them	all.	

If	you	don’t	want	to	use	Homebrew,	things	are	a	bit	more	annoying.	The	Neovim	dev	team	
doesn’t	maintain	a	MacOS	installer,	so	you’ll	have	to	download	a	tarball	and	extract	it,	then	
link	to	the	binary	from	somewhere	on	your	system	path.	If	you	don’t	know	what	any	of	that	
means,	honestly,	use	Homebrew,	it’s	easier!	

https://github.com/neovim/neovim/releases/
https://github.com/nvim-treesitter/nvim-treesitter
https://github.com/nvim-treesitter/nvim-treesitter
https://brew.sh/

Linux

If	Neovim	isn’t	available	using	your	distribution’s	default	package	manager,	you	have	a	very	
strange	Linux	distribution,	indeed!	

So	just	run	sudo pacman -S neovim,	sudo apt install neovim,	sudo dnf install
neovim,	or	the	appropriate	command	for	whichever	more	esoteric	package	manager	you	
prefer.	

If	you	want	a	nightly	version,	you	may	Kind	the	instructions	on	the	neovim/neovim	GitHub	
Releases	page,	or	will	have	to	dig	into	your	distro’s	documentation.	

You	will	also	need	to	install	a	C	compiler	in	the	unlikely	event	that	your	Linux	distribution	
didn’t	come	with	one.	For	most	distros,	just	install	the	gcc	package	and	you	should	be	good	
to	go.	

Try Neovim Raw (If You Dare)

Once	you	have	Neovim	installed,	you	can	try	it	out	by	simply	typing	nvim	(or	nvim
<filename>	to	open	a	speciKic	Kile)	into	the	terminal	you	installed	a	few	sections	ago.	If	it	is	
installed	correctly	and	on	your	path,	you’ll	get	an	unappealing	looking	editor	that	looks	like	
it	was	forked	from	something	written	in	the	90s	that	had	the	express	intent	of	looking	like	it	
was	written	in	the	70s.	

So,	at	least	it’s	honest?	

Unfortunately,	you’re	now	trapped.	To	save	you	the	frantic	“how	do	I	exit	vim”	google	
search,	the	command	to	quit	is	Escape	followed	by	the	three	characters	:q!	followed	by	
Enter:	<Escape>	<Colon>	q	<Exclamation>	<Enter>.	

Seriously,	“How	do	I	exit	vim”	is	one	of	the	top	three	autocompletes	on	Google	for	“How	do	I	
exit…”.	Apparently	only	a	Samsung	TV	plus	and	full	screen	mode	on	MacOS	are	harder	to	get	
out	of!	

TIP:	If	you	want	to,	you	can	run	the	command	<Escape>:Tutor<Enter>	to	open	
an	interactive	text	Kile	that	you	can	read	through	and	edit	while	learning	the	basics	
of	Neovim.	I	do	recommend	doing	this	at	some	point,	but	now	may	not	be	the	
right	time,	as	a	lot	of	things	that	are	“normal”	in	the	vim	tutor	are	different	
(better!)	using	LazyVim.	The	rest	of	this	book	does	not	assume	you	have	gone	
through	the	tutor,	but	it	also	won’t	necessarily	cover	everything	that	is	available	
there.	

Install LazyVim

Now	that	you	have	Neovim	up	and	running,	let’s	get	it	conKigured	to	look	like	it	was	
developed	this	century.	

Installing	LazyVim	requires	a	bit	of	work	with	git.	Since	you	are	reading	this	book,	I	am	
assuming	you	are	a)	a	software	developer	and	therefore	b)	familiar	with	git.	You	can	
probably	use	whichever	visual	git	tool	you	are	familiar	with.	But…	now	that	you	have	that	
fancy	GPU	accelerated	terminal	emulator,	I	say	put	it	to	good	use.	

The	git	commands	to	install	LazyVim	are	more	or	less	the	same	for	the	various	operating	
systems,	though	paths	and	environment	variables	are	different.	

Start with a clean slate

First,	remove	or	back	up	all	existing	Neovim	state.	This	step	is	largely	optional	if	you’ve	
never	used	Neovim	before,	but	I	recommend	making	sure	the	following	directories	have	
been	removed	or	moved:	

Clean up: Windows with Subsystem for Linux, MacOS, and Linux
rm -rf ~/.config/nvim	
rm -rf ~/.local/share/nvim	
rm -rf ~/.cache/nvim	

If	you	aren’t	brand	new	to	Neovim	and	have	a	conKig	you	want	to	keep	in	case	you	don’t	like	
this	LazyVim	experiment,	move	it	someplace	safe	instead	of	removing	it.	

Clean Up: Windows without WSL

The	location	of	the	conKig	and	data	folders	is	a	little	bit	different,	but	the	idea	is	the	same	as	
for	the	Unix	systems.	Just	use	Powershell	commands	instead	of	the	Unix	core-tools:	

Move-Item $env:LOCALAPPDATA\nvim $env:LOCALAPPDATA\nvim.bak	
Move-Item $env:LOCALAPPDATA\nvim-data $env:LOCALAPPDATA\nvim-data.bak	

Install other recommended dependencies

I	strongly	recommend	installing	lazygit,	ripgrep	and	fd,	which	are	used	by	LazyVim	to	
provide	enhanced	git,	string	searching,	and	Kile	searching	behaviours.	Most	package	
managers	will	have	these	available	for	trivial	installation.	You	can	Kind	more	speciKic	
installation	instructions	on	their	respective	GitHub	repositories	under	jessedufKield/lazygit,	
BurntSushi/ripgrep	and	sharkdp/fd	respectively.	

https://github.com/jesseduffield/lazygit
https://github.com/BurntSushi/ripgrep
https://github.com/sharkdp/fd

Clone the starter template

You’ll	use	a	git clone	command	to	download	the	starter	template	and	copy	it	into	the	
user	conKig	directory	for	Neovim,	then	remove	the	.git	folder.	

The	starter	is	just	that:	a	starter.	So	you	won’t	ever	need	to	pull	changes	from	this	repo.	
Instead,	LazyVim	will	manage	updating	itself	and	all	its	plugins	for	you.	The	only	reason	the	
starter	is	a	git	repo	is	that	it’s	easy	for	the	LazyVim	maintainers	to	maintain.	From	your	
point	of	view	you’re	just	downloading	the	current	state	of	the	repo	and	don’t	need	to	know	
about	the	past	or	future	state.	

git clone: Windows with Subsystem for Linux, MacOS, and Linux

On	Unix	systems,	use	these	commands:	

git clone https://github.com/LazyVim/starter ~/.config/nvim	
rm -rf +/.config/nvim/.git	

git clone: Windows without WSL

On	native	Windows,	use	these	commands:	

git clone https://github.com/LazyVim/starter $env:LOCALAPPDATA\nvim	
Remove-Item $env:LOCALAPPDATA\nvim\.git -Recurse -Force	

The Dashboard

Ok,	you	have	completed	the	most	difKicult	section	of	this	book	and	you’re	Kinally	ready	to	
start	LazyVim!	Use	the	same	terminal	command	as	before:	nvim.	

You’ll	see	a	Klurry	of	activity	as	LazyVim	sets	everything	up	and	downloads	the	plugins	it	
thinks	are	essential.	You	may	see	it	compile	and	install	a	bunch	of	treesitter	grammars;	if	
you	see	a	message	to	“Show	More”	use	Shift+G	to	skip	to	the	end.	Once	everything	is	
installed,	you’ll	see	a	summary	of	the	plugins	that	were	installed	inside	a	window	managed	
by	a	plugin	called	lazy.nvim	

The	lazy.nvim	plugin	should	not	be	confused	with	LazyVim	itself,	though	both	are	
maintained	by	the	same	person.	lazy.nvim	is	strictly	a	plugin	manager,	whereas	LazyVim	
is	a	collection	of	plugins	and	conKigurations	that	ship	together.	One	of	those	plugins	is	
lazy.nvim.	

We’ll	be	covering	most	of	the	plugins	that	ship	with	LazyVim	later	in	this	book,	so	for	now,	
once	you	get	to	the	lazy.nvim	screen,	you	can	press	the	q.	The	plugin	will	interpret	this	as	
quit lazy.nvim	and	the	window	will	close.	

Now	you	can	see	the	LazyVim	dashboard,	which	is	the	Kirst	thing	you’ll	see	every	time	you	
start	LazyVim.	It’s	a	little	more	friendly	than	the	out	of	the	box	Neovim	experience:	

	

screenshot	

As	you	can	see,	there	are	several	commands	that	allow	you	to	interact	with	the	dashboard	
via	a	single	keystroke.	Most	importantly,	of	course,	is	the	q	keystroke	to	quit!	

Most	of	these	options	are	self-explanatory,	but	we’ll	discuss	a	few	of	them	more	deeply	in	
later	chapters.	

Lazy.nvim Plugin Manager

When	you	Kirst	open	LazyVim,	it	checks	for	any	plugins	that	are	available	to	be	updated,	and	
gives	you	an	overview	in	a	message	notiKication	that	will	look	something	like	this:	

	

screenshot	

Because	Neovim	is	pretty	barebones	by	default,	LazyVim	ships	with	a	ton	of	useful	plugins	
ready	to	go.	And	there’s	a	good	chance	they	are	out	of	date	because	plugin	development	in	
the	Neovim	world	happens	at	a	ridiculously	fast	pace.	

In	the	old	old	days,	plugin	management	was	completely	manual	process.	In	the	less	old,	but	
still	old	days,	it	was	managed	by	a	variety	of	plugins	that	did	the	job	but	felt	like	they	were	
lacking	something.	

Then	came	the	plugin	manager	called	lazy.nvim,	created	by	the	same	person	that	later	
created	LazyVim.	

Lazy.nvim	has	a	ton	of	slick	features,	most	notably	loading	plugins	only	when	needed	
(hence	the	name	“Lazy”)	so	that	your	editor	is	lightning	fast	to	start	up.	It	also	has	a	nice	UI	
for	managing	plugins	installation	and	updates.	

You	can	access	this	UI	from	the	dashboard	simply	by	pressing	the	l	key,	which	is	labelled	in	
the	dashboard	as	Lazy.	The	label	should	probably	be	Lazy PLugin Manager	to	make	it	a	
bit	more	clear,	but	now	you	know	what	Lazy	means	so	you	won’t	forget.	

If	you	are	not	actively	displaying	the	dashboard,	you	can	show	the	plugin	manger	at	any	
time	by	entering	space	mode.	We’ll	cover	space	mode	in	detail	in	the	next	chapter,	but	for	
now:	First	make	sure	you	are	in	Normal	mode	by	checking	the	lower	left	corner	of	the	
active	window.	If	not,	press	Esc	to	enter	Normal	mode.	Then	press	Space	to	enter	space	
mode,	followed	by	l	to	bring	up	the	lazy.nvim	plugin	manager.	

The	Lazy	plugin	manager	interface	looks	like	this:	

	

screenshot	

The	window	that	has	popped	up	is	called	a	Kloating	window.	You’ll	see	these	in	a	few	
different	situations,	usually	when	there	is	interactive	data	that	you	need	to	work	with	(like	
a	web	modal).	This	particular	Kloating	window	comes	with	it’s	own	set	of	keybindings.	The	
keybindings	are	listed	across	the	top,	and	pay	attention	to	the	fact	that	all	of	them	are	
capitalized,	so	you	need	to	use	the	Shift	key	when	invoking	them.	

Realistically,	the	only	keybinding	I	use	on	a	regular	basis	is	Shift-S,	for	Sync.	This	is	the	
equivalent	of	running	install,	clean,	and	update	in	one	single	action,	so	it	has	the	effect	of	
guaranteeing	that	the	versions	of	plugins	that	are	actually	installed	is	exactly	consistent	
with	the	ones	speciKied	in	the	LazyVim	conKiguration.	

So	when	the	“Plugin	updates	available”	notiKication	pops	up,	just	press	Space-l	and	thenS	
and	wait	for	the	sync	to	complete.	Then	press	q	to	close	the	Lazy.nvim	plugin	mode	and	
Kloating	window	and	return	to	what	you	were	doing.	

A Note on Managing Dot Files

If	you	work	on	multiple	different	computers,	you’ll	quickly	Kind	that	you	don’t	want	to	set	
up	your	LazyVim	conKiguration	separately	on	all	of	them.	LazyVim	does	not	have	the	
equivalent	of	VSCode’s	“settings	sync”,	though	such	plugins	exist.	

An	alternative	I	recommend	instead	is	to	store	your	conKig	Kiles	in	a	git	repository.	You’ll	
probably	Kind	there	a	few	other	Kiles	you	want	to	keep	in	there	such	as	your	.gitconfig	
and	.zshrc	/	.bashrc	/	.config/fish/config.fish.	If	you	use	GitHub	Codespaces,	you	
may	already	manage	some	dot	Kiles	with	git.	

If	not,	my	personal	recommendation	is	to	follow	the	advice	in	the	excellent	blog	article	
DotKiles:	Best	way	to	store	in	a	bare	git	repository	from	the	Atlassian	blog.	

Before	distributions	like	LazyVim	came	along,	it	was	very	common	for	people	to	store	their	
vim	conKiguration	in	a	public	repository,	and	borrow	ideas	from	each	other.	This	practice	is	
not	quite	dead,	and	you	can	Kind	my	own	dot	Kiles	on	GitHub	in	the	dusty-phillips/dotKiles	
repository.	

Summary

In	this	chapter,	we	brieKly	discussed	the	history	of	Vim,	Neovim,	and	LazyVim,	and	why	they	
are	still	relevant	today.	Then	we	covered	the	importance	of	GPU	accelerated	terminals	and	
Nerd	Fonts.	

We	Kigured	out	how	to	install	Neovim	and	its	dependencies	under	whichever	operating	
system(s)	you	use,	and	Kinally,	installed	LazyVim	from	its	starter	template.	

In	the	next	chapter,	we’ll	discuss	Vim’s	core	feature:	Modal	Editing,	and	dig	into	the	many	
things	you	can	do	with	your	keyboard	in	LazyVim.	

Chapter 2: What is Modal Edi/ng, Anyway?

As	you	may	have	guessed	from	the	letters	on	the	dashboard,	LazyVim	is	very	keyboard-
centric.	As	many	actions	as	possible	can	be	performed	without	moving	your	hands	between	
mouse	and	keyboard.	That’s	not	to	say	that	it’s	impossible	to	use	the	mouse.	You	can	click	
anywhere	in	the	editor,	interact	with	buttons	and	modals	when	they	pop	up,	use	the	scroll	
wheel	or	gestures	to	scroll,	and	resize	editor	panes	by	dragging	their	borders,	for	example.	
But	you	can	also	do	all	of	these	things	using	the	keyboard,	and	usually	more	efKiciently.	

https://www.atlassian.com/git/tutorials/dotfiles
https://github.com/dusty-phillips/dotfiles

More	importantly,	you	can	do	most	things	by	holding	at	most	two	keys,	and	usually	just	one.	
You	will	only	rarely	have	to	contort	your	hands	into	painful	(and	dangerous)	positions	to	
Control + Shift + Alt + <some key>.	

How	does	Vim	do	this?	Modal	editing.	

Introduc/on to Modal Edi/ng

“Modes”	in	LazyVim	simply	mean	that	different	keystrokes	mean	different	things	depending	
on	which	mode	is	currently	active.	For	example,	when	you	start	the	editor	up,	you	are	in	a	
“Dashboard	Mode”,	and	the	most	common	interpretation	of	keystrokes	in	that	mode	are	
listed	right	there	on	the	dashboard.	This	discoverability	of	keybindings	in	a	given	mode	is	a	
common	theme	in	LazyVim,	and	a	huge	improvement	over	the	opaque	default	behaviour	of	
Neovim	itself.	

To	see	what	I	mean,	press	the	spacebar	to	enter	“space	mode”.	Space	mode	is	a	LazyVim	
concept;	it	does	not	exist	in	a	raw	Neovim	installation	(though	you	can	install	various	
plugins	to	recreate	the	effect	if	you	want	Neovim	without	LazyVim).	

Entering	space	mode	pops	up	a	menu	along	the	bottom	of	your	screen.	If	you	have	the	
dashboard	open,	it	will	look	something	like	this	(my	menu	contains	some	customizations,	
so	yours	won’t	be	identical):	

	

screenshot	

That’s	a	big	menu.	The	important	thing	to	focus	on	right	now	is	the	f	key,	which	we	will	use	
to	understand	modal	editing.	

If	you	are	in	dashboard	mode	and	press	the	f	key,	you	will	open	the	Find file	dialog	
using	a	plugin	we’ll	discuss	later	called	Telescope.	However,	now	that	you	are	in	space	
mode,	if	you	press	the	f	key,	it	will	open	the	file/find	space	mode	submenu.	

This	is	the	crux	of	what	modal	editing	means:	The	behaviour	of	a	given	key	depends	on	the	
current	mode.	As	indicated	by	the	line	at	the	bottom	of	the	space	mode	menu,	you	can	press	
the	Escape	key	to	exit	space	mode	and	return	to	the	dashboard.	Go	ahead	and	do	that.	

Now	you’re	back	in	dashboard	mode,	and	you	can	press	the	n	key	to	create	a	new,	empty	
buffer.	

Pay	close	attention	to	the	lower	left	corner	of	that	buffer,	where	you’ll	see	the	word	INSERT	
in	green:	

	

screenshot	

Remember	how	I	said	Space	mode	is	a	LazyVim	concept?	Insert	mode	is	a	Vi	concept,	that	
the	successors	Vim,	then	Neovim,	and	now	LazyVim	have	all	inherited.	In	Insert	mode,	the	
vast	majority	of	keystrokes	do	what	you	would	expert	in	any	editor:	they	insert	text.	So	you	
can	touch	type	as	with	any	other	editor!	

You	can	access	some	keyboard	shortcuts	in	insert	mode	using	Control	and	Alt	keys.	For	
example,	you	can	hit	Control-r	to	enter	the	“Registers”	mini-mode,	which	pops	up	a	list	of	
“registers”	you	can	paste	from.	We’ll	cover	registers	in	detail	later.	For	now,	it	is	enough	to	
know	that	Control-r	followed	by	the	plus	key	(i.e.	Shift-=)	will	paste	text	from	the	
clipboard	in	insert	mode.	

However,	you	will	much	more	often	change	to	Normal	mode	to	perform	any	non-text-entry	
operations,	including	pasting	text.	

To	get	into	Normal	mode	from	Insert	mode,	hit	the	Escape	key.	The	cursor	will	change	from	
a	bar	to	a	block	and	the	indicator	in	the	lower	left	corner	will	change	to	a	blue	NORMAL:	

	

screenshot	

In	Normal	mode,	pressing	various	keyboard	characters	will	not	insert	text	like	it	does	in	
Insert	mode.	For	example,	pressing	p,	rather	than	inserting	a	literal	p	character	into	the	
document,	will	instead	paste	from	the	system	clipboard.	

Vim	and	Neovim	aren’t	very	discoverable,	but	they	ARE	extremely	memorable.	As	often	as	
possible,	the	keyboard	shortcuts	to	perform	an	action	start	with	a	letter	that	makes	sense	
for	the	action	being	performed.	You	might	think	p	stands	for	“Paste”,	but	in	fact	the	concept	
has	been	around	for	longer	than	the	clipboard	mnemonic.	You	are	welcome	to	think	of	it	as	
“paste”	if	that’s	easier	for	you,	but	in	vim	parlance,	it	actually	stands	for	“put”,	and	we’ll	use	
that	word	in	different	contexts	throughout	the	book.	

For	some	contrast,	the	Control-r	key	that	pops	up	the	list	of	registers	in	Insert	mode	does	
not	pop	up	a	list	of	registers	in	Normal	mode.	Instead,	Control-r	means	“Redo”	(aka	undo	
an	undo).	In	order	to	enter	the	Registers	mini-mode	from	Normal	mode,	you	would	pres	the	
"	(Shift-apostrophe)	key	instead.	

If	that	sounds	confusing,	don’t	worry.	Your	brain	and	muscle	memory	will	adapt	more	
quickly	than	you	expect	and	you’ll	always	understand	that	behaviours	in	normal	mode	are	
not	the	same	as	in	insert	mode.	

To	be	honest,	I	hardly	ever	use	non-text-entry	commands	in	Insert	mode.	I	Kind	it	is	easier	
to	switch	back	to	Normal	mode	and	then	perform	the	command	from	normal	mode.	It	
doesn’t	usually	take	a	higher	number	of	keystrokes	to	do	so	and	I	don’t	have	to	hold	down	
multiple	keys	at	once.	

As	I	mentioned,	the	universal	key	to	exit	Insert	mode	and	return	to	Normal	mode	is	Escape.	
And	that	brings	us	to	an	important	point:	You	will	be	using	this	key	a	lot,	but	moving	your	
hands	from	the	home	row	to	the	Escape	key	in	the	upper	left	corner	and	back	again	is	
somewhat	inefKicient.	

There	are	a	few	common	workarounds	to	this	situation:	

• If	you	have	a	customizable	keyboard	you	can	put	the	escape	key	in	a	more	accessible	
location.	This	is	what	I	do.	I	have	a	Kinesis	Advantage	360,	and	I	remapped	the	keys	
so	that	escape	is	in	the	“thumb	key”	section	of	this	admittedly	bizarre	keyboard.	It’s	
as	easy	to	hit	as	enter,	space,	and	backspace,	other	keys	that	I	use	very	frequently.	

• Your	operating	system	is	probably	also	capable	of	remapping	keys.	A	lot	of	users	
replace	the	largely	useless	Capslock	with	the	Escape	key.	If	you	ever	go	back	to	the	
keyboard	chaining	editors	descended	from	Emacs,	including	VSCode:	For	these	
editors	it	can	be	more	comfortable	to	remap	Capslock	to	the	commonly-held	
Control	key,	especially	on	laptop	keyboards).	

• Neovim	itself	is	also	able	to	remap	keys.	We’ll	discuss	how	to	do	this	in	LazyVim	
later.	One	common	pattern	is	to	map	a	series	of	uncommon	keystrokes	that	you	
wouldn’t	likely	type	together	when	inserting	text	to	the	escape	key.	So	you	can	set	it	
up	to	map	something	like	jk,	jj	or	;;	in	Insert	mode	to	switch	to	normal	mode.	I’ve	
tried	this	and	don’t	care	for	it	as	it	introduces	a	timing	thing	when	you	hit	the	Kirst	
character	and	Neovim	is	waiting	to	see	if	you’re	going	to	type	a	command	or	let	text	
insertion	continue,	but	you	might	like	it.	

• The	Control-C	keyboard	combination	also	works	to	exit	normal	mode,	with	no	
remapping	required.	I	don’t	like	this	because	it’s	two	keystrokes	and	on	my	Dvorak	
keyboard,	Control-C	is	harder	to	hit	than	on	a	qwerty	keyboard	where	C	is	on	the	
bottom	row	near	the	Control	key.	

Don’t	worry	about	actually	changing	it	for	now;	just	start	getting	used	to	using	Escape	
where	it	is	and	see	if	you	Kind	it	annoying.	I’ll	mention	it	again	when	we	get	to	the	
remapping	section	and	you	can	decide	then	if	you	want	to	change	it.	

Once	you’re	in	Normal	mode,	you’ll	obviously	want	to	get	back	to	Insert	mode	to	enter	text	
at	some	point!	There	are	several	different	ways	to	do	this	that	we’ll	discuss	later.	As	a	taste,	
here	are	a	couple	of	the	most	common	ones:	

The	i	key	always	inserts	text	before	the	current	cursor	position.	This	means	that	you	could	
(very	clumsily)	move	your	cursor	left	by	pressing	i <Escape> i <Escape>	repeatedly.	
When	you	press	i,	you	insert	text	before	the	current	position,	and	then	escape	takes	you	
out	of	Insert	mode	at	that	new	“before”	position.	

Commonly,	you	want	to	enter	insert	mode	after	the	current	cursor	position.	To	do	that,	use	
the	a	key	instead	(mnemonic:	i	=	Insert	Before,	a	=	Insert	After).	

You’ll	Kind	that	you	need	to	alternate	between	these	a	lot	as	you	are	navigating	a	document	
because	the	various	navigation	commands	we’ll	cover	later	will	often	put	you	just	before	or	
just	after	the	position	you	need	to	insert	at.	So	it’s	important	to	remember	both	of	them.	

Two	other	very	common	operations	are	to	insert	at	the	very	beginning	or	the	very	end	of	
the	current	line.	You	could	use	navigation	commands	to	move	to	the	start	or	end	and	then	
use	i	and	a,	but	it’s	easier	to	use	the	commands	Shift-I	and	Shift-A	instead	(The	
difference	is	that	they	are	capitalized,	so	you	need	the	Shift	key	with	them).	

A note on Keybinding Mnemonics

It	is	very	common	for	related	keybindings	like	these	to	be	assigned	to	the	lowercase	and	
uppercase	versions	of	the	same	key.	You	will	often	Kind	that	the	lower	case	version	means	
“do	something”	and	the	uppercase	version	means	either	do the same thing only
BIGGER	or	do the opposite thing,	depending	on	the	situation.	In	this	case,	i	and	a	

mean	“insert	one	character	before	or	after	the	cursor”	and	I	and	A	are	“insert	before	or	
after	the	cursor,	only	BIGGER	(i.e.	at	the	beginning	or	end	of	the	line)”.	

To	illustrate	the	“do	the	opposite	thing”	situation,	consider	the	o	and	Shift-O	keys,	which	
are	two	new	ways	to	get	into	insert	mode.	

The	o	key	is	used	to	enter	insert	mode	on	a	new	line	below	the	current	one.	I’ve	heard	the	
mnemonic	as	“Open	a	new	line	above/below”	to	help	you	remember	the	otherwise	not	
terribly	memorable	o	command.	And	in	the	classic	“do	the	opposite	thing”	scenario,	Shift-
O	means	“create	a	new	line	above	the	current	one	and	enter	insert	mode	on	it”.	

Let’s	discuss	one	Kinal	very	useful	command	takes	two	keystrokes,	one	after	the	other:	gi.	
That	is	a	single	press	and	release	of	g	followed	by	i.	

This	effectively	means	“Go	to	the	last	place	you	entered	insert	mode,	and	enter	insert	mode	
again”.	In	this	case,	the	g	key	is	actually	switching	to	a	new	mini-mode	I	call	“Go	To”	mode,	
though	not	all	the	commands	accessible	from	it	are	strictly	related	to	going	places.	You	can	
see	the	entire	list	of	commands	available	in	“Go	To”	mode	by	pressing	the	g	key	in	normal	
mode	and	waiting	for	the	menu	to	pop	up	at	the	bottom	of	the	window:	

	

screenshot	

We’ll	cover	most	of	them	later,	but	notice	that	the	i	key	is	in	there	labelled	Move to the
last insertion and INSERT.	So	if	you	forget	how	to	go	to	the	last	insertion	point,	you	
can	enter	Go	To	mode	and	scan	the	menu	to	Kind	the	i	again.	

Try	all	of	those	commands	(a,	i,	o,	A,	I,	O,	and	gi)	repeatedly,	entering	some	text	and	
pressing	Escape	to	return	to	Normal	mode.	Then	try	it	again.	Move	your	cursor	around	the	
text	using	the	mouse	(we’ll	get	to	keyboard	navigation	soon,	I	promise),	and	try	using	the	
commands	again	to	see	how	they	behave	in	new	locations.	

Get	really	comfortable	with	switching	between	Normal	and	Insert	mode.	You	might	think	
you’ll	spend	most	of	your	time	in	Insert	mode,	but	the	truth	is	code	is	edited	far	more	often	
than	it	is	written	afresh,	and	you’ll	be	alternating	between	them	constantly.	

Visual Mode

The	other	major	mode	that	LazyVim	inherits	from	its	ancestors	is	“Visual”	mode.	Visual	
mode	is	used	to	select	text.	In	general,	you	can	enter	Visual	mode	and	then	use	many	of	the	
same	navigation	keys	you	would	use	in	Normal	mode	to	move	your	cursor	around.	Since	we	
haven’t	covered	those	navigation	keystrokes	yet,	I’m	going	to	defer	a	detailed	discussion	of	
Visual	Mode	until	we	have	the	necessary	foundation.	

Command Mode

Command	mode	is	different	from	some	of	the	other	modes	we’ve	seen,	which	were	mostly	
submenus	or	editor-level	major	modes.	You	can	get	into	command	mode	from	Normal	
mode	by	using	the	:	(i.e.	Shift-<semicolon>)	command.	In	LazyVim,	this	will	pop	up	a	
little	widget	where	you	can	type	what	is	known	as	an	“Ex	Command.”	This	name	comes	
from	vi’s	predecessor,	ex,	which	hasn’t	really	been	used	(other	than	as	part	of	vim)	in	
decades.	

Essentially,	you	can	enter	a	wide	variety	of	commands	into	this	widget	and	expect	certain	
behaviours	to	happen	as	a	result.	It	is	actually	more	similar	to	the	VS	Code	command	pallet	
than	anything	else,	though	it	is	a	quite	different	beast.	

You	already	know	one	ex	command	from	the	previous	chapter!	Remember	
<Escape><Colon>q!<Enter>	the	command	to	exit	the	editor?	You	now	know	that	the	
Escape	is	to	enter	Normal	mode	from	whatever	mode	you	are	in.	The	colon	is	used	to	
switch	to	Command	mode,	and	the	q	is	short	for	quit	(You	could	type	the	full	word	quit	if	
you	didn’t	feel	the	need	to	conserve	keystrokes).	The	exclamation	point	says	“without	
saving”	and	the	Enter	means	“submit	the	ex	command”.	

As	another	example,	let’s	consider	the	write	ex	command.	Type	:	followed	by	write
myfile.txt	like	this:	

	

screenshot	

Press	Enter	to	conKirm	and	execute	the	command.	

Note:	Most	commands	can	be	shortened	to	their	shortest	unique	common	preKix.	
You	can	type	:w myfile.txt	instead	of	:write myfile.txt.	The	most	popular	
commands	even	have	special	combined	commands,	so	:wq	will	save	and	exit,	
although	you’ll	probably	prefer	:x	as	it’s	even	shorter.	

Command	mode	is	kind	of	weird	because	it’s	kind	of	like	an	insert	mode	in	the	sense	that	
you	can	type	text	into	it,	and	some	of	the	keybindings	that	work	in	insert	mode	work	also	in	
command	mode	(including	Control-r	to	paste	from	a	register).	But	other	keybindings	
work	differently	in	command	mode.	The	most	important	one	is	the	Tab	key,	which	will	do	a	
sort	of	“tab	completion”	on	the	command.	For	example,	:q<Tab>	pops	up	a	menu	like	this:	

	

screenshot	

This	damn	completion	menu	is	surprisingly	unintuitive	to	navigate.	You’re	probably	going	
to	want	to	bookmark	this	section	or	take	some	notes	or	something	until	you	get	used	to	it!	

First,	if	you	want	to	select	a	different	entry	in	the	menu,	you	would	surely	think	you	can	use	
the	arrow	keys.	Which	you	can,	but	it’s	a	mind-mess	because	you	need	to	use	Left	and	
Right	to	move	the	cursor	Up	and	Down.	I	know!	WTF,	right?	

This	is	mostly	because	the	menu	looks	different	in	LazyVim	than	it	did	in	normal	Neovim,	
but	the	keys	haven’t	been	remapped.	So	instead,	I	suggest	using	Tab	and	Shift-Tab	to	
select	different	entries	from	the	menu.	It’s	easier	to	remember	and	much	easier	on	the	
muscle	memory:	Tab	once	to	show	the	menu,	tab	again	to	cycle	through	the	menu.	

Second,	there	is	some	nuance	around	con6irming	one	of	those	menu	entries.	In	the	above	
example,	you	can	just	press	Enter	to	conKirm	the	selection	and	execute	it.	However,	there	
are	often	cases	where	you	want	to	conKirm	the	selection	and	then	continue	editing	the	
command.	An	excellent	example	is	the	:e	or	:edit	command.	

This	command	is	used	to	open	a	Kile	on	your	Kilesystem,	but	you	have	to	type	the	entire	path	
to	the	Kile.	For	example,	if	you	have	the	following	directory	structure:	

.	
└── foo	
 ├── bar	
 └── baz	
 │ └── fizz.txt	

…and	you	have	Neovim	open,	you	would	have	to	type	the	following	to	open	the	baz.txt	
Kile:	

:e foo/baz/fizz.txt	

That’s	a	lot	of	typing	if	you	need	to	get	to	deeply	nested	directories.	Luckily,	you	can	use	tab	
completion	for	this.	You	can	type	:e f<tab>b<tab><tab><tab>	to	get	foo/baz,	but	at	
this	point	the	menu	is	still	open:	

	

screenshot	

If	you	press	Enter	now,	it’s	going	to	open	the	baz	folder	instead	of	just	conKirming	the	
selection,	which	is	not	what	you	want.	And	if	you	pres	Tab	again	it	will	cycle	through	the	
menu	some	more.	What	you	want	to	do	at	this	point	is	press	the	Control-y	(y	for	“yes”)	
key	combination.	This	will	conKirm	the	baz	selection	and	close	the	menu.	Now	you	can	
press	tab	again	to	complete	the	fizz.txt	portion	of	the	command.	

It	is	possible	to	remap	these	keys	to	be	more	like	other	software,	and	I	honestly	think	this	is	
one	thing	LazyVim	should	do	by	default.	I	personally,	have	not	remapped	them	as	I	have	
plenty	of	vim	muscle	memory	using	these	keystrokes,	but	I	will	show	you	how	to	do	it	later	
when	we	cover	keymapping.	

You	probably	won’t	spend	a	lot	of	time	in	command	mode.	There	are	easier	ways	to	open	
Kiles	in	LazyVim,	for	example,	as	well	as	to	quit	the	editor.	And	if	you	need	to	do	something	

more	complex	with	commnad	history,	there	is	a	special	window	you	can	use	to	edit	
commands	with	Insert	and	Normal	mode	that	we	will	cover	later.	

For	now,	remember	<Tab>	and	Control-y	and	you’ll	be	able	to	navigate	the	Command	
menu	when	you	need	to.	There	are	other	keybindings	you	can	use	to	edit	commands,	but	
unless	you	Kind	yourself	annoyed	by	certain	repeated	tasks,	I	wouldn’t	worry	about	them.	

The	most	important	command,	by	the	way,	is	:help.	Vim	was	created	before	folks	had	
ready	access	to	the	Internet,	so	it	has	a	tradition	of	shipping	all	of	its	documentation	with	
the	editor.	Plugins	tend	to	follow	this	tradition.	So	for	example,	if	you	can’t	remember	the	
keyboard	shortcut	to	put	text,	try	:help put.	Or,	if	you	want	to	know	what	the	Control-R	
keyboard	shortcut	does,	try	:help Control-R.	Of	course,	the	Vim	help	documents	have	
been	indexed	by	your	favourite	search	engines	and	AI	chat	bots,	so	you	can	go	all	new-
school	and	ask	them	if	you	prefer.	

Summary

In	this	chapter,	we	became	comfortable	with	the	concept	of	modal	editing	and	the	most	
important	LazyVim	modes.	There	are	other	mini-modes	and	one	major	mode	that	will	come	
up	as	we	progress	through	this	book,	but	becoming	comfortable	with	Normal,	Insert,	and	
Command	mode	(and	how	to	switch	between	them)	will	take	you	a	long	way	on	your	
LazyVim	journey.	

In	the	next	chapter,	we’ll	learn	a	whole	bunch	of	different	ways	to	move	the	cursor	around	
inside	a	document.	

Chapter 3: Ge6ng Around

Software	developers	spend	far	more	time	editing	code	than	we	do	writing	it.	We’re	always	
debugging,	adding	features,	and	refactoring.	

Indeed,	the	most	common	thing	I	ever	do	is	add	a	print/println/console.log	at	some	speciKic	
line	in	the	codebase.	

If	you	are	coming	from	the	more	common	word	processing	or	text	editing	ecosystems,	
navigating	code	is	the	thing	that	is	most	different	in	vim’s	modal	paradigm.	Even	if	you’re	
used	to	vim,	some	of	the	plugins	LazyVim	ships	by	default	suggest	different	methods	of	
code	navigation	from	the	old	vim	standbys.	

In	VSCode,	often	the	quickest	way	to	get	from	one	point	in	the	code	to	another	is	to	use	the	
mouse.	For	minor	movements,	the	arrow	keys	work	well,	and	they	can	be	combined	with	
Control,	Alt,	or	Cmd/Win	to	move	in	larger	increments	such	as	by	words,	paragraphs,	or	

to	the	beginning	or	end	of	the	line.	There	are	numerous	other	keyboard	shortcuts	to	make	
getting	around	easier,	and	the	Language	Server	support	allows	for	easy	semantic	code	
navigation	such	as	“Go	to	DeKinition”	and	“Go	to	Symbol”.	

Vim	also	supports	mouse	navigation,	but	you’ll	likely	reach	for	it	less	often	once	you	train	
up	on	the	navigation	keymappings.	Vim	has	keybindings	for	the	same	Language	Server	
Protocol	features	that	VSCode	has,	and	they	are	often	more	accessible.	The	big	difference	
with	Vim	is	the	entire	keyboard’s	worth	of	navigation	commands	that	are	opened	up	to	you	
when	your	editor	is	in	Normal	mode.	

Seeking Text

LazyVim	ships	with	a	plugin	called	flash.nvim,	which	is	maintained	by	the	creator	of	
LazyVim	and	integrates	very	nicely	with	it.	

This	plugin	provides	a	code	navigation	mode	that	has	been	available	in	various	vim	plugins	
(starting	with	one	called	EasyMotion)	for	many	years,	and	has	historically	been	quite	
controversial.	A	lot	of	long-time	vim	users	think	it	breaks	the	vim	paradigm.	I	won’t	go	into	
the	details	as	to	why,	but	I	will	acknowledge	that	this	was	true	in	older	iterations	of	the	
paradigm	and	is	much	less	true	in	modern	versions	such	as	flash.nvim.	

If	you	can	see	the	code	you	want	to	navigate	to	(i.e.	because	the	Kile	is	currently	open	and	
the	code	is	scrolled	into	view),	flash.nvim	is	almost	always	the	fastest	way	to	move	your	
cursor	there.	It	admittedly	takes	at	least	three	keystrokes,	but	those	three	keystrokes	
require	no	mental	math	or	incrementally	“moving	closer”	to	the	target	until	you	get	there,	
which	are	two	of	the	less	efKicient	problems	that	come	up	with	certain	other	vim	navigation	
techniques	(as	well	as	non-modal	editing).	

To	invoke	flash,	press	the	s	key	in	Normal	mode.	My	mnemonic	for	s	is	“s	stands	for	seek”,	
although	I’ve	also	heard	it	referred	to	as	“sneak”	or	“search”	mode.	Searching	in	LazyVim	is	
a	different	behaviour	(it	doesn’t	care	if	the	text	is	currently	visible	or	not),	and	“sneaking”	
sounds	a	little	too	dishonest,	so	I	use	“Seek”.	

The	Kirst	thing	to	notice	when	you	press	s	is	that	the	text	fades	to	a	uniform	colour	and	
there’s	a	little	lightning	symbol	in	the	Mode	indicator	indicating	that	Flash	mode	is	active:	

	

screenshot	

Since	you	know	where	you	want	the	cursor	to	be,	your	eyes	are	probably	looking	right	at	it,	
and	you	know	exactly	what	character	is	at	that	location.	So	after	entering	seek	mode,	simply	
type	the	character	you	want	to	jump	to.	

For	example,	in	the	following	screenshot,	I	want	to	Kix	the	(intentional)	typo	in	the	heading	
of	this	section,	changing	Test	to	Text.	

	

screenshot	

I	have	hit	ss,	and	every	single	s	in	the	screenshot	has	turned	blue,	including	capitals.	There	
is	an	s	character	beside	the	Klash	icon	in	the	status	bar	indicating	that	I	have	seeked	an	s.	

In	addition,	beside	(to	the	right)	of	all	the	s	characters	nearest	to	the	cursor	(which	is	in	the	
bottom	paragraph)	have	a	green	label	beside	them.	If	I	wanted	to	jump	to	any	of	those	s	
characters,	I	would	just	have	to	type	that	label	and	boom,	I’d	be	there.	

However,	the	character	I	want	to	hit	is	too	far	away	to	have	a	unique	label,	as	there	are	a	lot	
of	s	characters	in	my	text.	No	matter!	I	just	have	to	type	the	character	to	the	right	of	the	
target	s	character,	which	is	a	t.	Now	my	screen	looks	like	this:	

	

screenshot	

Now,	all	instances	of	st	in	the	Kile	are	highlighted	in	blue,	and	since	there	aren’t	as	many	st	
as	s,	all	of	those	instances	have	a	label	beside	them.	The	text	I	want	to	move	to	is	labelled	
with	a	y,	so	I	press	y	and	my	cursor	is	moved	to	the	s	character	I	wanted	to	change.	Now	I	
can	type	rx	to	replace	the	s	with	an	x	(we’ll	discuss	editing	code	in	a	later	chapter,	but	now	
you’ve	had	a	taste	of	it).	

If	you	have	multiple	Kiles	open	in	splits	(which	we’ll	also	discuss	in	detail	later),	seek	mode	
can	be	used	to	move	your	cursor	anywhere	on	the	screen,	not	just	in	the	currently	active	Kile.	

Seek	mode	does	have	drawbacks	however,	at	least	the	way	flash.nvim	implements	it.	
There	are	some	characters	you	can’t	move	to	directly	because	you	run	out	of	text	to	search	
for	before	a	labelled	match	is	in	that	location.	For	me	this	happens	most	often	when	I	want	
to	edit	the	end	of	a	line.	If	I	type	sn	because	I	want	to	edit	a	line	that	has	n	as	the	last	
character,	but	there	are	a	bunch	of	n	characters	closer	to	my	cursor	than	the	one	I	want	to	
move	to,	Klash	may	not	label	the	n	I	want	to	move	to,	and	it	won’t	accept	a	carriage	return	as	
a	“next	character”	input.	

For	this	reason,	I	don’t	seek	near	ends	of	lines.	Instead,	I’ll	seek	to	a	word	somewhere	in	the	
middle	of	the	same	line	and	then	use	A	which,	as	you	may	recall,	will	put	me	in	insert	mode	
at	the	end	of	the	line.	Alternatively,	if	I	don’t	want	to	enter	insert	mode,	I	will	use	the	$	
symbol	(Shift+4),	which	is	the	normal	mode	command	for	“Move	cursor	to	end	of	current	
line”.	

Scrolling the screen

Seek	mode	only	works	if	the	text	you	want	to	jump	to	is	visible	on	the	screen.	You	can’t	label	
something	you	can’t	see!	Often,	this	means	you	want	to	use	search	or	one	of	the	larger	or	
more	speciKic	motions	discussed	later,	but	there	are	also	a	few	keybindings	you	can	use	to	
scroll	the	screen	so	you	can	see	your	target	and	jump	to	it.	

These	keybindings	are	a	little	unusual	by	Vim	standards	because	they	mostly	involve	using	
the	control	key.	How	anti-modal!	In	my	experience,	these	keybindings	don’t	actually	get	a	
ton	of	use.	Indeed	I’ve	forgotten	some	of	them	and	had	to	look	them	up	to	write	this	
chapter.	

The	scrolling	keys	I	use	the	most	are	deKinitely	Control-d	and	Control-u,	where	the	
mnemonic	is	down	and	up.	They	scroll	the	window	by	half	a	screen’s	worth	of	text.	The	
cursor	stays	in	the	same	spot	relative	to	the	window,	which	means	that	it	is	moved	up	or	
down	by	half	a	screen’s	worth	of	text	relative	to	the	document.	

If	you	need	to	move	even	further,	you	can	use	the	Control-f	and	Control-b	keybindings,	
which	move	by	a	full	page	of	text.	I	don’t	like	these	ones	because	I	never	quite	know	where	
the	cursor	is	going	to	end	up	and	I	become	disoriented.	But	it	can	be	handy	if	you	need	to	
scroll	something	into	view	quickly	to	use	Seek	mode	on	it.	Unlike	Control-d	and	
Control-u,	Control-f	and	Control-b	can	be	preKixed	with	a	count,	so	you	can	type	
5<Control-f>	if	you	need	to	scroll	ahead	by	5	pages.	

I	have	no	idea	why	the	keys	Control-y	and	Control-e	where	chosen	to	scroll	the	window	
by	one	line	at	a	time.	I	never	use	them.	These	keybindings	accept	a	count,	so	if	you	can	
remember	them,	they	are	useful	for	subtle	repositioning	of	the	text.	The	main	advantage	of	
these	keybindings	is	that	they	don’t	move	the	cursor	unless	it	would	scroll	off	the	screen,	so	
if	you	are	working	on	a	line	and	need	more	visibility	but	don’t	want	to	move	the	cursor,	you	
could	use	Control-y	and	Control-e	to	do	it.	

The	reason	I	don’t	use	these	keys	(other	than	lack	of	a	decent	mnemonic)	is	that	I	prefer	to	
do	relative	cursor	positioning	using	z	mode.	

Z Mode

The	z	menu	is	kind	an	of	an	eclectic	mix	of	cursor	positioning,	code	folding,	and	random	
sub-menus,	as	you	can	see	by	pressing	the	z	key	while	in	normal	mode:	

	

screenshot	

If	that	looks	like	a	big	menu,	you	don’t	know	the	half	of	it!	There	are	a	ton	of	other	z-mode	
keybindings	that	are	obscure	enough	to	not	deserve	mention	in	the	menu!	I’ll	cover	the	
three	most	useful	scrolling	related	ones	here	and	we’ll	discuss	others	later.	

The	relative	cursor	keybindings	I	use	exclusively	are	zt,	zb,	and	zz.	These	move	the	line	
that	the	cursor	is	currently	on	to	the	top,	bottom,	or	middle	of	the	screen,	respectively.	
When	moving	to	the	top	or	bottom	it	will	leave	a	few	lines	of	context	above	or	below	the	
cursor.	

There	are	others	that	will	also	move	the	cursor	to	the	Kirst	column	of	the	window,	but	
instead	of	memorizing	those	shortcuts,	I	recommend	using	zt0,	zb0,	and	zz0	instead.	As	
we’ll	discuss	later,	the	0	command	just	means	“Go	to	the	start	of	the	line”	(You	can	also	use	
home	if	your	keyboard	has	a	home	key,	but	0	is	easier	to	hit	on	many	keyboards).	

You	can	Kind	other	scrolling	keybindings	in	the	NeoVim	documentation	by	typing	:help
scrolling,	but	the	ones	I	just	mentioned	will	probably	more	than	cover	your	needs	as	you	
learn	far	more	nuanced	methods	of	navigating	code.	

The first rule of Vim

So	there	is	a	holy	rule	in	Vim	that	I	constly	break	for	valid	reasons.	Unless	you	are	the	very	
strange	combination	of	weird	that	I	am,	you	probably	should	not	break	it:	

Never	use	the	arrow	keys	to	move	the	cursor.	

The	background	behind	this	rule	is	that	it	takes	a	tenth	of	a	second	or	so	to	move	your	hand	
to	the	arrow	keys	on	most	keyboards,	and	another	tenth	of	a	second	to	move	it	back	to	the	
home	row.	I’m	not	convinced	these	tenths	of	a	second	add	up	to	an	appreciable	amount	of	
time,	even	considering	the	millions	of	characters	I	have	typed	in	my	lifetime	(Yes,	millions.	I	
did	the	math	once).	

But	I	do	think	the	arrow	keys	on	most	keyboards	can	do	nasty	things	to	the	long	term	
health	of	your	hands,	and	honestly,	the	more	you	get	used	to	the	alternative	vim	
keybindings,	the	more	you’ll	prefer	to	use	them.	

The	vim	keybindings	for	arrow	keys	seem	rather	unintuitive	when	you	Kirst	look	at	them:	h,	
j,	k,	and	l.	These	map	to	the	directions,	left,	down,	up,	and	right.	If	it	seems	weird	that	l	
means	“right”	instead	of	left,	or	you’re	wondering	why	they	skipped	i	since	that	appears	
to	be	an	alphabetic	sequence,	look	at	your	keyboard.	

If	you	are	a	English-speaking	person	with	a	standard	Qwerty	keyboard,	the	letters	h,	j,	k,	
and	l	are	on	the	home	row	under	your	right	hand,	in	that	order,	and	are	therefore	the	
easiest	keys	to	hit	on	the	entire	keyboard.	

Open	a	largish	Kile	in	Neovim	(you	can	use	:e path/to/filename)	and	experiment	with	
moving	the	cursor	left,	right,	up	and	down	using	the	home	row	keys.	While	you	do	that,	I’ll	
tell	you	why	I	don’t	use	them	because	I’m	triply	abnormal.	

First,	I’m	left	handed,	so	the	right	hand	home	row	is	slightly	less	accessible	feeling.	Second,	
I’ve	been	a	Dvorak	user	for	two	decades.	The	j,	k,	and	l	keys	are	not	on	my	home	row.	
Third,	I	use	a	Kinesis	Advantage	360	keyboard,	which,	among	other	bizarre	layout	features,	
places	the	arrow	keys	within	reach	of	my	Kingers	so	I	don’t	have	to	move	my	hand	to	hit	
them.	

By	a	strange	twist	of	fate,	these	weirdnesses	kind	of	cancel	each	other	out.	The	j	and	k	keys	
happen	to	be	directly	above	the	left	and	right	arrow	keys	under	my	dominant	left	hand.	So	
that’s	what	I	use	for	navigation:	Left	Right,	j	k.	If	you	are	less	weird	than	me,	you	should	
probably	use	the	right-hand	home	row	keys	the	way	vim	was	designed.	

Vim,	Neovim,	and	LazyVim	are	all	really	good	at	reusing	motions,	so	you	will	Kind	that	h,	j,	
k,	and	l	are	used	for	a	lot	of	different	navigation	sequences	as	you	progress	through	this	
book.	Take	enough	time	to	really	get	used	to	them.	But	recognize	that	if	you	ever	have	to	
push	these	keys	more	than	twice	in	succession	to	move	the	cursor,	you’re	wasting	
keystrokes.	

Coun/ng

The	vast	majority	of	commands	in	Vim	can	be	preKixed	with	a	count	to	repeat	the	motion	
multiple	times.	The	count	is	typically	entered	as	a	sequence	of	digits	before	the	command	
you	want	to	repeat.	

So,	for	example,	to	move	the	cursor	up	15	lines,	you	would	enter	normal	mode	and	hit	the	
keys	15k.	To	move	it	Kive	characters	to	the	right,	use	5l.	

This	is	why	LazyVim	has	such	weird	line	numbering	by	default.	Consider	the	following	
screenshot:	

	

screenshot	

My	cursor	in	this	screenshot	is	on	line	126,	which	is	highlighted	in	the	left	gutter.	It’s	also	is	
also	visible	in	the	lower	right	corner	of	my	window,	though	I	cropped	it	out	in	this	
screenshot.	But	directly	above	line	126	we	see	the	line	number	1,	and	directly	below	it	we	
also	see	the	line	number	1.	

Let’s	say	I	want	to	move	my	cursor	to	the	Scolling the screen	heading.	

This	line	has	the	number	5	beside	it,	so	I	don’t	have	to	count	lines	or	do	any	mental	
arithmetic	to	Kigure	out	the	count	to	use	to	move	my	cursor.	I	just	type	5j	and	my	cursor	
moves	to	the	desired	line.	

Now	that	you	know	what	they	are	for,	I	suggest	leaving	relative	numbers	on	until	you	get	
used	to	them.	If	you	Kind	them	distracting	or	just	don’t	use	them,	you	can	change	to	normal	
line	numbers	by	editing	your	LazyVim	conKiguration.	Open	the	Kile	~/.config/nvim/lua/
config/options.lua,	which	should	have	been	created	for	you	by	LazyVim	but	currently	
won’t	have	anything	in	it	other	than	a	comment	describing	what	it	is	for.	

Tip:	You	can	use	the	space	mode	command	<Space>fc	to	Kind	Kiles	in	the	LazyVim	
conKiguration	directory.	This	will	pop	up	the	Telescope	Kile	picker	that	we’ll	discuss	in	detail	
in	the	next	chapter.	Type	options	and	press	<Enter>	to	open	the	Kile.	

To	disable	relative	Kile	numbers,	add	this	line	to	the	Kile	and	save	it:	

vim.opt.relativenumber = false	

Then	reopen	Neovim,	and	you	should	see	the	absolute	value	of	line	numbers	in	the	left	
column.	

Personally,	I	Kind	line	numbers	to	not	be	very	useful	and	I	don’t	like	wasting	valuable	screen	
width	on	displaying	those	characters.	As	has	become	a	running	theme,	I	recognize	that	I	am	
somewhat	odd!	But	if	you	also	want	to	disable	line-numbers	altogether,	you’ll	need	another	
line	in	options.lua:	

vim.opt.number = false	
vim.opt.relativenumber = false	

Find mode

If	you	need	to	move	your	cursor	to	a	position	that	is	relatively	close	to	its	current	position,	
you	may	want	to	use	LazyVim’s	Find	mode	instead	of	the	Seek	mode	we	described	earlier.	
The	default	Find	mode	in	Neovim	is	rather	limited,	but	the	flash.nvim	plugin	that	enables	
Seek	mode	makes	it	much	nicer	to	use.	

To	enter	Kind	mode,	press	the	f	key.	Like	Seek	mode,	a	portion	of	your	screen	will	dim,	
indicating	that	you	should	type	another	character,	and	after	you	do	so,	all	instances	of	that	
character	after	the	cursor	will	be	highlighted.	

This	is	where	the	similarities	between	Find	mode	and	Seek	mode	end,	however.	My	cursor	
(which	was	originally	in	the	middle	of	the	word	‘described’	in	this	screenshot)	immediately	
jumped	forward	to	the	Kirst	s	(case	insensitive)	in	the	document.	You’ll	also	notice	that	none	
of	the	text	before	the	place	where	my	cursor	has	been	dimmed,	and	that	none	of	the	s	
characters	in	the	lines	before	my	cursor	have	been	highlighted.	

Also	unlike	Seek	mode,	there	are	no	labels	to	jump	directly	to	any	of	the	s	keys	that	have	
been	highlighted,	and	I	cannot	type	additional	search	characters	to	narrow	down	the	
search.	

Instead,	I	need	to	use	counts	to	jump	to	later	instances	of	s.	If	I	want	to	jump	ahead	to	the	
third	highlighted	s,	I	type	3f	and	my	cursor	will	move	there.	However,	if	you	want	to	jump	
to	a	much	later	s,	you	probably	don’t	want	to	individually	count	how	many	s	keys	there	are.	
Luckily,	after	you	use	a	count,	LazyVim	leaves	you	in	Kind	mode,	so	you	can	just	guess	how	
many	s	characters	there	are	and	then	once	you	are	closer,	enter	a	new	count.	If	you	only	
want	to	jump	ahead	by	one	s	character,	you	don’t	need	to	enter	a	count,	just	press	f	by	itself	
and	you’ll	move	ahead.	

If	you	miscounted	or	misguessed	and	jump	too	far,	fear	not!	You	can	take	advantage	of	the	
fact	that	Shift-F	means	“Kind	backwards”,	and	can	also	be	counted.	So	if	you	need	to	move	
to	the	15th	highlighted	s,	it’s	totally	Kine	to	guess	18f,	realize	you’ve	gone	three	too	far,	and	
use	3<Shift>F	to	jump	back	to	the	previous	character.	

Moreover,	if	you	know	that	the	character	you	are	looking	for	is	behind	or	above	your	cursor	
in	the	document,	you	can	enter	Kind	mode	with	Shift-F	instead	of	f	in	the	Kirst	place.	this	
will	immediately	start	a	backwards	Kind	operation	instead	of	a	forward	one.	And	if	you	
know	right	off	the	bat	that	you	want	to	jump	back	or	ahead	by	three	instances	of	the	given	
character,	you	can	even	use	a	count	when	you	Kirst	enter	Kind	mode.	

There	is	also	a	subtle	variation	of	Find	mode	that	I	call	“To”	mode,	although	the	ofKicial	Vim	
mnemonic	is	actual	“’til”	mode.	You	enter	it	with	a	t	or	Shift-T	depending	on	what	
direction	you	want	to	go.	

“To”	mode	behaves	identically	to	Kind	mode	except	that	it	jumps	to	just	before	the	target	
character.	

You	might	think	that	to	mode	is	kind	of	redundant	because	you	could	fairly	easily	use	Kind	
mode	followed	by	a	single	h	to	move	the	cursor	left.	But	“To”	mode	is	extremely	useful	when	
you	are	combining	it	with	operations	to	edit	the	text,	which	we	will	discuss	later.	As	a	taste,	
if	you	use	the	command	d2ts,	it	will	delete	all	text	between	the	cursor	and	the	second	s	it	
encounters,	but	leave	that	s	alone.	This	is	than	the	d2fsis<Escape>	that	would	be	
required	if	you	used	a	Kind	command	and	then	had	to	enter	insert	mode	to	add	the	s	back.	

Moving by Words

When	f	or	t	feels	too	big,	and	cursors	with	counts	feel	too	small,	you’ll	most	likely	want	to	
use	the	word	movement	commands.	In	other	editors	and	IDEs	you	might	be	used	to	getting	
this	functionality	by	holding	Control	or	Alt	(depending	on	the	operating	system	and	
editor)	while	using	the	arrow	keys.	

Neovim	is	easier;	you	don’t	have	to	move	your	hands	to	the	arrow	key	section	of	the	
keyboard	and	you	don’t	have	to	hold	down	multiple	keys	at	once.	

Instead,	you	can	just	enter	normal	mode	and	press	the	w	key	to	move	to	the	beginning	of	the	
next	word.	If	you	instead	want	to	move	to	the	end	of	the	current	word,	use	the	e	key.	If	you	
are	already	at	the	end	of	the	current	word,	e	will	go	to	the	end	of	the	next	word.	This	is	
useful	when	you	want	to	combine	it	with	counts:	If	you	need	to	move	to	the	end	of	the	word	
that	is	two	words	after	the	current	word,	press	3e.	This	is	the	same	as	pressing	e	three	
times,	which	would	move	to	the	end	of	the	current	word,	then	the	next	word,	and	Kinally	to	
the	end	of	the	word	you	want	to	hit.	w	can	also	be	preKixed	with	a	count	if	you	need	to	move	
to	the	beginning	of	a	word	that	is	a	certain	number	of	words	after	the	current	one.	

Use	the	b	key	if	you	want	to	move	backwards	instead.	This	will	move	you	to	the	beginning	
of	the	current	word,	or	if	you	are	already	at	the	beginning	of	the	word,	it	will	move	to	the	
beginning	of	the	previous	word.	As	usual,	use	a	count	to	move	even	to	the	beginning	of	even	
more	words.	

Surprisingly,	it	takes	a	bit	more	work	to	move	to	the	end	of	the	previous	word,	as	you	need	
to	press	two	keys:	g	followed	by	e.	The	mnemonic	for	this	is	“go	to	end	of	previous	word”.	In	
practice,	you’ll	Kind	that	you	hardly	ever	need	this	functionality	for	some	reason,	and	the	
honest	truth	is	I	usually	use	be	(b	to	move	to	beginning	of	previous	word,	then	e	to	go	to	
end	of	that	word)	to	move	to	the	end	of	the	previous	word.	If	you	do	use,ge,	however,	it	can	
be	combined	with	a	count	as	well.	You’ll	need	to	type	something	like	4ge,	depending	on	the	
count.	The	command	g4e	wouldn’t	do	anything	useful.	

Collectively,	you	may	occasionally	hear	the	w,	e,	and	b	commands	referred	as	the	“web”	
words.	It	just	means	“moving	by	words”.	These	are	probably	the	most	common	movements	
you	will	use,	more	than	individual	cursor	positions,	simply	because	most	editing	actions	
tend	to	involve	changing	or	deleting	a	word	or	sequence	of	words.	

Moving by Words, Only BIGGER

The	“shifted”	form	of	the	web	words	also	move	by	words,	but	the	deKinition	of	“word”	is	
different.	SpeciKically,	a	capital	W	will	move	to	just	after	the	next	whitespace	character,	
where	a	lowercase	w	will	use	other	forms	of	punctuation	to	delineate	a	word.	Consider	a	
method	call	on	an	object	that	looks	something	like	this	in	many	languages:	

myObj.methodName('foo', 'bar', 'baz');	

If	you	cursor	is	currently	at	the	beginning	of	that	line,	a	w	will	move	your	cursor	to	the	
period	on	the	line,	a	second	w	will	move	you	to	the	m,	and	subsequent	w	presses	will	stop	at	
the	paren	and	quotes	as	well.	

On	the	other	hand,	if	your	cursor	is	at	the	beginning	of	the	line,	a	Shift-W	will	move	you	all	
the	way	to	the	Kirst	quote	in	the	"bar"	argument,	since	that	is	where	the	Kirst	whitespace	
character	is.	

As	a	visualization,	here	are	all	the	stops	on	that	line	of	code	when	you	use	w	compared	to	
when	you	use	W:	

myObj.methodName("foo", "bar", "baz")	
-----ww---------w-w--w--ww--w--ww--w---->	
------------------------W------W-------->	

The	B,	E,	and	gE	motions	behave	similarly,	moving	in	the	appropriate	direction	by	
whitespace-delineated	words	instead	of	punctuation	ones.	

One	thing	that	is	kind	of	annoying	both	in	Vim	and	the	way	LazyVim	is	conKigured	is	that	
there’s	no	way	to	navigate	between	the	individual	words	of	CamelCaseWords	or	
snake_case_words.	You	can	use	fC	or	t_	and	similar	if	you	want	to,	but	I	will	later	show	

you	up	how	to	set	up	the	nvim-spider	plugin	that	makes	navigating	these	common	
programming	constructs	simpler.	

Line targets

Very	frequently,	you	need	to	move	to	the	beginning	or	end	of	the	line	you	are	currently	
editing.	Often	you	can	use	I	or	A	for	this	if	your	goal	is	to	move	to	that	location	and	enter	
insert	mode,	but	if	you	need	to	move	there	and	stay	in	normal	mode	(e.g.	for	other	purposes	
such	as	to	delete	or	change	a	word)	you	can	use	the	^,	$,	and	0	commands.	

If	you	are	familiar	with	regular	expressions,	you	might	know	that	^	is	used	to	match	the	
start	of	text	or	start	of	the	line	and	that	$	is	used	to	match	the	end,	so	the	mnemonic	of	
using	these	two	keybindings	to	match	the	beginning	and	end	of	the	current	line	will	
hopefully	be	less	unmemorable	than	they	seem	at	Kirst.	

There	is	a	certain	lack	of	symmetry	between	the	two,	however.	The	$	(Shift-4)	command	
simply	means	“go	to	the	end	of	the	line”,	as	in	the	last	character	before	the	ending	newline,	
no	matter	what	that	character	is.	The	^	or	caret	(Shift-6)	means	“go	to	the	beginning	of	
the	text	on	this	line”.	The	“of	the	text”	there	is	important:	if	your	line	has	whitespace	at	the	
beginning	(e.g.	indentation),	the	^	caret	will	not	go	to	the	very	Kirst	column,	but	will	instead	
go	to	the	Kirst	non-whitespace	character.	

To	move	to	the	very	beginning	of	the	line,	use	the	0	key.	0	is	the	only	numeric	key	that	maps	
to	a	command	because	the	others	all	start	a	count.	But	it	wouldn’t	make	sense	to	start	a	
count	with	0,	so	we	get	to	use	it	for	“move	to	the	zeroth	column”.	

There	is	also	a	command	to	go	to	the	end	of	the	line	excluding	whitespace,	but	I	have	never	
used	it,	probably	because	I	usually	have	formatters	conKigured	to	trim	trailing	whitespace	
so	it	doesn’t	come	up.	

The	two	character	combination	g_	(g	underscore)	means	“go	to	the	last	non-blank	
character”.	I	guess	_	kind	of	looks	like	“not	a	space”,	so	it’s	kind	of	mnemonic?	I	include	it	to	
be	comprehensive,	but	you’ll	likely	not	use	it	much.	You	also	have	the	option	of	combining	
other	commands	you’ve	learned	so	you	don’t	have	to	memorize	this	one	off.	For	example,	
you	can	use	the	three	character	$ge	(combining	“end	of	line”	with	go	backwards	to	end	of	
word)	or	$be	to	move	to	the	last	non-blank	on	the	line.	You	have	options;	pick	the	one	that	
you	Kind	is	easiest	to	remember	or	type!	

Jumping to specific lines

If	you	compile	some	code	or	run	a	linter,	you	will	invariably	be	given	a	line	number	where	
the	error	occurred	(unless	the	compiler	is	particularly	useless).	

You	can	jump	to	a	speciKic	line	by	entering	the	line	number	as	a	count,	followed	by	Shift-
G.	So	100G	will	move	your	cursor	to	line	100.	

Shift-G	is	a	normal	command,	though,	so	you	can	issue	it	without	a	count,	in	which	case	
the	G	command	will	always	take	you	to	the	end	of	the	Kile.	

You	can	go	to	the	top	of	the	Kile	with	1G	if	you	want,	but	since	this	is	such	a	common	
operation,	you	can	instead	use	gg	(two	lower	case	gs).	The	mnemonic	for	g	in	all	cases	is	
“Go	to”,	and	there	are	a	lot	of	things	that	can	come	after	a	g	(:help g	will	introduce	you	to	
the	ones	I	don’t	cover,	although	be	aware	that	LazyVim	has	overridden	some	of	them).	

Since	the	most	common	place	you	are	likely	to	want	to	“go	to”	is	a	line	number,	the	easiest	
to	type	G	and	gg	commands	are	used	for	line	number	navigation.	

Jump History

All	this	jumping	around	can	make	you	feel	a	little	lost.	Luckily,	there	are	two	super-useful	
keybindings	for	going	back	to	places	you	previously	jumped.	

Control-o	is	the	non-modal	control-based	keybinding	that	I	use	most	often.	I	should	
honestly	bind	it	to	something	more	accessible,	I	use	it	so	much.	It	basically	means	“Go	to	the	
place	I	jumped	from”.	

This	is	super	handy	when	you’re	editing	code	deep	in	a	Kile	or	module	and	realize	you	need	
to	import	a	library	at	the	top	of	the	Kile.	You	can	use	gg	to	jump	to	the	top	of	the	Kile,	s	to	
seek	to	the	line	you	want	to	add	the	import	on,	and	then	enter	insert	mode	to	add	the	
import.	Now	you	want	to	go	back	to	the	code	you	were	working	on	so	you	can	actually	use	
the	import.	Control-o	a	couple	times	will	take	you	there.	

NeoVim	keeps	a	history	of	all	your	jumps,	so	you	can	jump	between	several	locations	
(perhaps	to	look	up	documentation	or	the	call	signature	for	a	function)	and	always	Kind	a	
way	back.	

If	you	jump	too	far,	you	can	use	the	Control-i	keybinding	to	jump	forward	in	history.	It’s	
just	the	opposite	of	Control-o.	I	don’t	know	why	i	and	o	were	chosen	for	these;	maybe	
because	they	are	side-by-side	on	a	Qwerty	keyboard?	They	are	used	commonly	enough	that	
once	you	learn	them,	you	won’t	forget.	

Summary

Navigating	code	is	a	huge	topic	in	Vim.	You’ve	already	learned	enough	commands	that	you	
can	navigate	a	Vim	window	more	efKiciently	than	most	non-modal	editors	can	dream	of.	But	

we’ve	actually	barely	scratched	the	surface,	and	we’ll	be	covering	a	bunch	of	even	more	
useful	code	navigation	commands	in	a	later	chapter.	

We	covered	the	LazyVim	Seek	mode	to	jump	anywhere	in	the	visible	window,	and	then	the	
scrolling	commands	to	make	sure	the	thing	you	want	to	jump	to	is	visible.	Then	we	covered	
moving	the	cursor	with	the	home	row	key	and	extended	them	with	counts.	

We	learned	how	Find	mode	differs	from	Seek	mode,	even	though	they	are	superKicially	
similar.	Then	we	covered	some	standard	keybindings	for	moving	by	words	and	to	key	
places	on	a	line	before	jumping	to	speciKic	lines.	We	wrapped	up	by	covering	how	to	
navigate	to	places	you	have	jumped	before.	

In	the	next	chapter,	we’ll	learn	more	about	opening	Kiles	and	navigating	the	Filesystem.	

Chapter 4: Opening Files

In	the	previous	chapter,	as	a	side-effect	of	learning	about	command	mode,	we	saw	how	to	
open	Kiles	the	old-fashioned	Vim	way,	using	the	:edit	command.	Another	old-school	
alternative	is	to	open	them	directly	from	the	terminal	shell	command	line,	using	nvim
filename.	

Both	of	these	are	occasionally	handy,	but	LazyVim	pre-conKigures	a	few	more	modern	ways	
of	navigating	and	opening	Kiles.	

Introducing Telescope

Telescope	is	a	wonderful	plugin	whose	functionality	should,	in	my	opinion,	be	built	into	
Neovim	by	default.	Since	it	isn’t,	we	have	to	rely	on	the	fact	that	it	is	shipped	with	LazyVim	
by	default	instead!	

Telescope	is	essentially	a	“picker”	interface	with	preview	and	fuzzy	search	capabilities.	If	
you’ve	used	the	command	menu	in	many	modern	editors	(or	even	Github	or	Slack),	you	
may	know	what	I’m	talking	about.	Telescope	itself	doesn’t	care	what	you	are	picking,	and	
there	are	a	wide	variety	of	plugins	available	that	use	it	for	many	different	tasks.	Telescope	
ships	with	the	most	common	aspects.	

The	most	common	task	you	will	perform	with	Telescope	is	to	open	a	Kile	using	fuzzy	search.	
I	use	this	command	dozens,	maybe	hundreds	of	times	per	day,	so	it’s	a	good	thing	it’s	got	a	
really	accessible	keybinding.	

The	Telescope	Kile	picker	is	best	illustrated	while	working	in	a	code	repository	with	a	lot	of	
Kiles.	So	close	Neovim	with	Space q q	and	use	the	cd	command	on	your	terminal	to	

change	to	the	directory	of	a	project	you’ve	been	working	on	recently	(If	you	don’t	have	one	
close	to	hand,	clone	your	favourite	open	source	project	and	use	that	instead).	Then	type	
nvim	to	open	Neovim	again.	

Tip:	I	had	you	exit	to	the	terminal	above	because	it’s	easy	to	reason	about,	but	it	is	
also	possible	to	change	directories	from	inside	LazyVim	using	the	:cd	command.	
Type	:cd the/path/to/the/directory	and	hit	enter,	remembering	that	you	
can	use	the	Tab	key	to	autocomplete	the	path.	Now	if	you	use	:e	to	open	Kiles,	they	
will	be	relative	to	the	directory	you	speciKied.	If	you	are	using	Telescope,	they	may	
be	relative	to	that	cwd	or	to	the	project	containing	the	current	Kile,	as	discussed	
shortly.	Use	:pwd	to	see	what	the	current	directory	is.	

Ok,	so	you’re	in	the	root	directory	of	a	large	project	and	you	want	to	open	an	arbitrary	Kile.	
Simply	press	Space	twice	(i.e.	Space Space)	to	pop	up	the	“Files	In	Current	Project”	
telescope	picker.	As	I	mentioned,	this	is	the	easiest	keybinding	to	type	on	your	entire	
keyboard.	The	Space	bar	on	most	keyboards	is	big,	and	you’re	hitting	it	with	your	strongest	
digit	–	the	thumb.	As	usual,	just	one	Space	will	pop	up	the	Space	mode	menu,	and	you	can	
see	that	a	second	Space	will	present	you	with	“Find	Files	(root	dir)”.	

For	the	project	containing	the	current	state	of	this	book,	the	picker	looks	like	this:	

	

screenshot	

The	picker	is	divided	into	three	main	areas:	the	results	list	in	the	upper	right,	a	preview	of	
the	currently	selected	Kile	on	the	right,	and	the	Input	area,	in	this	case	labelled	“Git	Files”.	

The	input	area	is	actively	focused	and	currently	in	insert	mode,	so	you	can	just	start	typing	
the	name	of	whatever	Kile	you	want	to	open.	This	is	a	“fuzzy	search”,	(a	concept	popularized	
by	Sublime	Text)	which	means	you	can	skip	letters,	saving	you	oh-so-precious	milliseconds.	
For	example,	if	I	type	ch3,	my	list	gets	Kiltered	down	to	the	following	Kiles:	

	

screenshot	

Only	Kiles	whose	paths	contain	those	three	characters	in	order,	with	possibly	other	
characters	in	between,	are	visible.	Telescope	has	helpfully	highlighted	those	three	letters	in	
the	results	so	you	can	easily	see	why	it	matched	(Though,	depending	on	the	medium	you	
are	reading,	it	may	not	be	clear	in	the	image.)	

Also	notice	that	by	default,	the	match	is	case	insensitive.	I	typed	the	lowercase	letter	c,	but	
it	matched	the	uppercase	C	in	the	Kilename.	This	is	usually	sufKicient	to	narrow	the	search	
results	to	what	you	need.	However,	if	you	do	use	any	capitalized	letters	in	your	search	than	
it	switches	to	a	case	sensitive	mode	(this	is	sometimes	referred	to	as	“smart	case”).	

That	means	that	Ch	will	match	all	the	Chapters,	but	cH	will	not	match	anything	at	all.	More	
interesting,	chF	will	also	not	match	anything	at	all	because	the	presence	of	the	capitalized	F	
makes	the	whole	thing	case	sensitive,	and	the	chapters	are	all	named	with	a	capital	C,	so	the	
lowercase	c	is	not	able	to	match	them.	

Another	neat	Telescope	matching	trick:	Sometimes	you	will	start	typing	a	word	and	realize	
you	need	to	match	something	earlier	in	the	path	to	distinguish	it.	For	example,	I	started	
typing	outline	in	these	source	Kiles	from	Fablehenge:	

https://www.fablehenge.com

	

screenshot	

Outline	is	a	common	word	in	this	app.	There	are	243	matching	Kiles,	and	I	realize	I	should	
probably	have	typed	comp	in	front	to	narrow	it	to	just	Kiles	in	the	component	directory.	I	
could	switch	to	normal	mode	and	edit	the	beginning	of	the	line,	but	it’s	faster	to	just	type	
<space>comp.	Telescope	will	interpret	the	space	as	“Kilter	the	lines	again	fuzzy	matching	
this	new	word	from	the	beginning”.	Here	we	can	see	that	only	comp...outline	Kiles	have	
been	matched:	

	

screenshot	

This	image	might	be	a	bit	surprising;	the	most	promising	match	is	obviously	the	one	at	the	
bottom	of	the	list	(which	is	why	it	is	selected).	The	other	27	matching	lines	contain	all	the	
letters	of	the	word	“outline”	and	all	the	letters	of	the	word	“comp”	in	order	from	left	to	
right.	However,	because	of	the	fuzzy	matching	algorithm,	the	two	can	actually	overlap!	So	
on	e.g.	the	second-to-last	entry,	the	c	of	the	matching	“comp”	is	before	the	word	outline,	
the	o	is	in	it,	and	the	m	and	p	both	come	after	the	word	outline.	Telescope	doesn’t	care,	
though	it	will	rang	matches	with	the	matching	letters	closer	together	as	more	important,	so	
they’ll	be	visible	at	the	bottom	of	the	results.	

You	can	use	the	up	and	down	arrow	keys	to	select	a	different	Kile	in	the	search	results,	and	
its	preview	will	show	up	in	the	right-hand	window.	Once	you	Kind	the	Kile	you	want	to	open,	
press	the	Enter	key	to	open	it	in	the	currently	active	Neovim	window.	

The	Telescope	input	area	even	has	its	own	normal	mode!	You	can	get	into	it	using	a	single	
press	of	the	Escape	key.	Now	if	you	press	j	or	k,	you’ll	be	able	to	select	different	Kiles	in	the	
list	without	moving	your	hand	to	the	arrow	keys.	Further,	the	h	and	l	keys	will	allow	you	to	
move	the	cursor	within	the	input	box	and	you	can	use	the	i	or	a	keys	to	enter	insert	mode	
at	the	new	location.	The	“but	bigger”	I	and	A	keys	allow	you	to	move	the	cursor	to	the	
beginning	or	end	of	the	line	and	enter	insert	mode	as	well.	

You	can	even	use	seek	mode,	as	we	discussed	in	Chapter	3,	though	it	works	a	bit	differently.	
When	you	press	the	s	key	while	in	the	telescope	picker’s	normal	mode,	you	can	skip	the	

part	where	you	enter	a	character	to	search	for.	Instead,	LazyVim	will	immediately	label	
every	line	in	the	picker	with	a	character	to	the	left	of	the	Kilename:	

	

screenshot	

These	characters	are	labels	for	each	line	in	the	picker.	Simply	press	one	of	the	shown	letters	
on	your	keyboard,	and	whichever	line	the	label	associated	with	that	letter	is	on	will	be	
selected.	Then	press	Enter	to	actually	open	the	Kile.	

Finally,	if	you	are	in	the	Telescope	window	and	decide	you	don’t	want	to	open	any	Kiles	after	
all	(or	you	got	the	information	you	needed	from	looking	at	the	preview	and	therefore	don’t	
need	to	open	it	all	the	way),	press	Escape	twice.	Once	to	enter	normal	mode	in	the	
Telescope	picker,	and	a	second	time	to	close	the	picker.	

If	you	need	to	scroll	the	preview	window	to	see	something	lower	down	in	the	Kile,	the	same	
Control-d,	Control-u,	Control-f,	and	Control-b	keys	that	we	discussed	in	the	Basic	
Navigation	chapter	can	be	used.	

The difference between “Root” and “cwd”

The	<Space><Space>	command	is	mapped	to	“Find	Files	(Root	Directory)”.	Two	other	
ways	to	open	telescope	are	to	use	<Space> f	to	open	the	“Kile/Kind”	menu,	and	either	f	or	
F	again.	

<Space>ff	is	the	same	as	<Space><Space>.	It	opens	“Find	Files	(Root	Directory)”	and	is	
just	another	longer	way	to	get	there.	I	assume	it	exists	in	both	places	so	that	users	can	
choose	to	map	some	other	action	to	<Space><Space>	and	still	be	able	to	access	that	
functionality;	<Space><Space>	is	the	easiest	keybinding	to	hit	on	the	keyboard,	so	it	
makes	sense	to	assign	it	to	your	most	common	action.	If	that	action	isn’t	opening	Kiles	with	
Telescope,	you	will	still	want	to	be	able	to	do	that	with	the	slightly	longer	<Space>ff	
keybinding.	

<Space>fF,	where	the	second	F	is	shifted,	is	similar;	it	is	mapped	to	an	action	called	“Find	
Files	(cwd)”.	If	you	run	it	in	your	project,	you’ll	probably	Kind	that	it	appears	to	do	the	exact	
same	thing	as	“Find	Files	(Root	Directory)”	(depending	on	how	your	project	is	set	up),	so	
the	purpose	of	two	separate	keybindings	may	be	confusing.	

Current Working Directory

cwd	stands	for	“Current	Working	Directory”,	and	by	default,	it	refers	to	whatever	directory	
your	terminal	was	in	when	you	typed	nvim	to	open	the	editor.	As	I	mentioned	brieKly	while	
discussing	tab	completion	in	the	command	menu,	you	can	change	the	cwd	for	the	entire	
editor	by	entering	command	mode	with	:	and	then	typing	cd path/to/directory	
(remember,	all	commands	are	followed	by	a	carriage	return,	so	press	Enter	or	Return	
afterwards).	Now	if	you	use	<Space>fF,	the	list	of	Kiles	will	be	shown	relative	to	the	new	
directory	you	have	changed	into.	

If	you	are	unsure	what	directory	you	are	in,	you	can	use	the	:pwd	(short	for	“print	working	
directory”)	command	to	have	it	pop	up	in	a	little	notiKication	window.	cd	and	pwd	are	the	
same	commands	used	by	bash,	zsh,	and	many	other	shells	for	changing	and	printing	the	
working	directory,	so	they	may	already	be	familiar	to	you.	

We	haven’t	discussed	splitting	your	editor	or	opening	new	tabs	yet,	but	this	is	a	good	time	
to	note	that	it	is	actually	possible	to	have	different	working	directories	for	different	
windows.	The	command	to	change	just	the	current	window’s	directory	is	:lcd,	short	for	
“local	change	directory”.	This	can	be	a	powerful	way	to	work	on	multiple	projects	at	the	
same	time	(for	example,	if	you	are	a	full	stack	developer	working	on	backend	and	frontend	
projects).	However,	the	LazyVim	concept	of	a	“Root”	directory	can	semi-automate	a	lot	of	
this.	

Root directory

The	root	directory	is	not	a	Vim	concept,	but	is	instead	a	Language	Server	Protocol	(LSP)	
concept.	LSPs	are	the	reason	that	VSCode	became	so	popular	so	quickly;	the	idea	was	that	
the	editor	could	call	out	to	an	external	service	running	on	your	computer	to	Kind	out	useful	
things	about	the	codebase.	The	LSP	powers	a	lot	of	useful	stuff	such	as	go	to	deKinition	and	

references,	highlighting	errors	in	your	code,	and	showing	documentation	for	a	variable	or	
class.	It	can	even	help	with	formatting	and	syntax	highlighting!	

The	root	directory	is	the	directory	that	the	LSP	infers	is	the	“home”	directory	of	the	
currently	open	Kile.	How	the	LSP	does	this	is	language	(and	language	server)	dependent.	For	
example,	in	Javascript	or	Typescript	projects	it	probably	searches	parent	directories	for	the	
presence	of	a	package.json	or	tsconfig.json	Kile	to	detect	the	root	directory,	whereas	
in	a	Python	project	it	might	instead	look	for	things	like	pyproject.toml	or	poetry.lock,	
and	Rust	projects	use	the	directory	that	contains	a	Cargo.toml.	Or	the	LSP	might	just	use	
the	presence	of	a	.git	folder	as	the	“root”	of	the	project’s	workspace.	

The	only	reason	this	root	directory	is	“often	the	same	as	your	cwd”	is	that	this	is	usually	the	
folder	you	want	to	work	from	when	you	are	working	on	a	project,	so	it’s	the	one	you	cd	into	
before	you	open	Neovim.	

This	automatic	root	directory	thing	can	be	super	useful	if	you	are	working	on	multiple	
projects.	Instead	of	using	lcd	as	discussed	in	the	previous	section,	you	can	just	open	a	Kile	
in	a	different	project	using	:e	or	one	of	the	Kile	Kinding	extensions	we’ll	discuss	next.	Then	if	
you	invoke	the	“Find	Kiles	(root	dir)”	command	using	<Space><Space>	or	<Space>ff,	it	
will	look	for	other	Kiles	in	the	same	root	directory	as	the	one	you	just	opened.	

However,	it	can	sometimes	be	confusing,	especially	if	you	are	working	in	a	so-called	
monorepo	or	if	you	have	root	directories	in	places	you	don’t	expect.	For	example,	I	have	a	
fairly	normal	Svelte	project	that	has	a	package.json	Kile	in	it.	This	projects	uses	Cypress	
for	testing,	and	the	Cypress	folder	has	a	tsconfig.json	Kile	in	it	that	causes	the	Typescript	
language	server	to	interpret	that	as	a	separate	root.	So	if	I	am	working	on	one	of	the	cypress	
test	Kiles	and	press	<Space><Space>,	the	root	directory	is	considered	the	Cypress	folder	
and	I	can	only	open	other	cypress	tests.	But	often	the	thing	I	wanted	to	do	was	open	a	
source	Kile	in	the	main	folder	to	see	why	a	test	is	failing.	In	this	case,	I	have	to	press	
<Escape><Escape>	to	exit	the	Telescope	picker,	then	<Space>fF	to	open	the	picker	in	
current	working	directory	mode	instead.	

Telescope	Kile	Kinder	isn’t	the	only	LazyVim	tool	to	use	the	related	concepts	of	working	and	
root	directories,	and	we’ll	discuss	two	others	next.	

The Neo-tree.nvim plugin

Neo-tree	creates	a	left-sidebar	Kile	explorer	experience	that	should	be	familiar	to	users	of	
many	modern	IDEs	and	editors.	While,	like	many	of	those	environments,	Neo-tree	does	
work	with	the	mouse,	it	is	optimized	for	keyboard	interactions,	making	it	faster	to	work	
with	once	you	learn	“Neo-tree	mode”.	

I	want	to	be	upfront	and	honest	here:	I	don’t	personally	use	Neo-tree.	I	Kind	that	the	
Telescope	picker	is	the	fastest	way	to	open	Kiles,	and	when	I	need	to	manipulate	the	
Kilesystem,	I	prefer	to	use	mini.files,	which	we	will	discuss	shortly.	The	primary	reason	I	
prefer	mini.files	is	that	it	uses	the	same	keybindings	as	vim	normal	mode.	Modes	are	
great,	but	having	more	than	necessary	is	not!	

However,	over	my	lifetime,	I	have	received	plenty	of	hints	that	I	may	be	rather	weird!	I	
suspect	that	many	readers	will	prefer	the	familiar	tree	view	experience	Neo-tree	provides,	
and	since	this	plugin	ships	with	LazyVim	by	default,	I	want	to	make	sure	it	gets	fair	
coverage	in	this	book.	

Let’s	start	by	opening	Neo-tree	using	the	<Space>-e	keybinding,	where	the	mnemonic	is	“e	
for	Explore”.	If	you	pop	up	the	space	mode	menu,	you’ll	see	that,	as	with	telescope,	there	are	
two	ways	to	open	the	Neo-tree	explorer:	<Space>-e	for	Explore Neo-tree (root
directory)	and	<Space>-E	for	Explore	Neo-tree	(cwd)`.	

“Root	directory”	and	“cwd”	have	the	same	meaning	we	discussed	in	the	previous	section,	
and	you	will	notice	the	consistent	relationship	between	lowercase	and	uppercase	letters:	
<Space>ff	and	<Space>e	both	open	the	root	directory,	and	<Space>fF	and	<Space>E	
both	open	the	current	working	directory.	

Tip:	To	hide	the	explorer	window,	just	press	<Space>e	again	while	it	is	visible,	or	
press	q	while	the	explorer	window	is	focused.	

When	the	explorer	is	opened,	it	shows	all	the	Kiles	and	folders	in	the	relevant	directory,	with	
all	the	folders	collapsed,	except	for	the	one	containing	the	currently	active	Kile,	if	there	is	
one.	For	example,	while	editing	this	Kile,	my	Neo-tree	looks	as	follows:	

	

screenshot	

It	may	not	show	up	clearly	in	the	screenshot,	but	the	cursor	is	on	the	Kile	I’m	currently	
editing.	I	can	move	that	cursor	up	and	down	using	the	arrow	keys	or	the	ubiquitous	j	and	k	
keys.	

Folders	are	collected	to	the	top	of	the	view.	If	you	move	the	cursor	to	one	of	these	folders,	
you	can	press	the	Enter	key	to	expand	the	folder.	And	if	you	move	it	to	a	Kile,	you	can	open	
the	Kile	in	the	current	vim	window	with	the	same	Enter	keypress.	

You	can	also	expand	and	collapse	folders	and	open	Kiles	by	double	clicking	with	the	mouse,	
but	my	guess	is	you	won’t	want	to	do	that	once	you	learn	proper	keyboard	navigation.	

Speaking	of	keyboard	navigation,	yes,	j	and	k	to	move	up	and	down	can	be	super	slow	if	
there	are	a	lot	of	Kiles	to	navigate.	All	of	the	commands	that	we	discussed	in	Chapter	3	can	
be	used	to	move	faster.	For	example,	10j	will	move	the	cursor	10	lines	down	with	just	three	
keystrokes	compared	to	pressing	j	10	times,	and	Control-d	or	Control-u	can	be	used	to	
scroll	the	tree	down	or	up.	Most	interestingly,	s	can	be	used	to	Seek	to	any	line	in	the	Neo-
tree	view,	even	if	Neo-tree	is	not	currently	focused.	

Neo-tree	will	show	the	root	or	cwd	as	the	topmost	directory.	If	you	need	to	navigate	“up”	
the	tree	to	a	higher-level	directory,	you	will	need	to	use	the	Backspace	key.	

Tip:	Backspace	is	often	coded	as	<BS>	in	Vim,	so	if	you	see	a	keybinding	or	
instructions	telling	you	that	<BS>	does	something,	they	aren’t	full	of	(bull)!	It	just	
means	Backspace.	

In	addition	to	navigating	and	opening	Kiles,	you	can	even	make	changes	to	the	Kile	system	
using	Neo-tree.	For	example,	to	delete	a	Kile,	you	can	move	the	cursor	over	that	Kile	and	hit	
the	d	key.	You’ll	be	prompted	with	a	popup	window	asking	if	you	are	sure;	hit	y	and	then	
Enter	to	conKirm	it:	

	

screenshot	

To	add	a	Kile	or	folder/directory,	use	the	a	key	and	enter	a	new	name.	Use	a	trailing	slash	(/)	
to	indicate	a	folder.	You	can	also	use	the	A	key	in	the	explorer	to	add	a	folder	without	having	
to	type	a	trailing	slash.	

The	r	key	can	be	used	to	rename	the	or	folder	under	the	cursor.	

To	copy	or	move	a	Kile,	you	can	use	Neo-tree’s	pseudo-clipboard.	I	say	“pseudo-”	because	
you	can’t	use	this	to	copy	a	Kile	to	be	pasted	in	MacOS	Finder	or	Windows	Explorer;	only	to	
other	places	in	the	Neo-tree.	

To	cut	a	Kile	with	the	intent	of	moving	it	somewhere	else	in	the	tree,	use	the	x	command.	If,	
instead,	you	want	to	copy	the	Kile,	use	y.	The	mnemonic	for	y	is	yank,	and	is	actually	the	
same	key	you	would	use	to	copy	text	in	the	normal	editor.	To	complete	the	move	or	copy,	
you’ll	need	to	navigate	to	the	folder	you	want	to	move	or	copy	it	into	and	use	the	p	key	
(which	you	may	recall	means	“put”	or	“paste”).	

Neo-tree	also	has	a	Filter	mode	that	I	Kind	quite	clumsy;	it’s	really	just	a	cheap	imitation	
Telescope	picker	in	a	smaller	window,	so	I	recommend	using	the	Telescope	picker	instead.	
You	can	access	it	using	/	and	enter	some	characters	to	limit	the	search	results	to	Kiles	that	
match	those	characters.	Then	use	the	up	and	down	arrows	to	navigate	the	list	(j	and	k	
won’t	work	here	because	you’re	in	a	sort	of	Insert	mode	context).	

There	is	a	ton	of	other	cool	stuff	that	Neo-tree	can	do.	We	will	cover	its	use	for	buffer,	git,	
and	symbol	navigation	later,	for	example.	In	the	meantime,	you	can	use	the	?	(mnemonic	
“ask	question	for	help”)	key	while	the	Neo-tree	window	is	focused	to	get	an	
overview,	:help neo-tree	if	you	want	to	drink	from	the	Kirehose.	

The mini.files alterna/ve

As	I	mentioned,	I	don’t	actually	use	Neo-tree	for	Kile	navigation.	I	Kind	that	it	feels	kind	of	
“foreign	and	un-vim-like”.	To	me,	it	is	a	completely	separate	experience	that	just	happens	to	
be	embedded	in	a	vim	window.	That	said,	I	also	don’t	like	the	tree	view	sidebar	experience	
in	VSCode	and	the	editors	it	emulates	/	is	emulated	by,	so	it’s	possible	that	tree	views	just	
aren’t	right	for	me.	

These	are	just	my	opinions,	and	one	of	the	golden	rules	of	text	editors	is	“all	opinions	are	
valid”	(otherwise	there	would	be	war).	A	large	number	of	Neovim	users	love	Neo-tree,	and	
you	should	use	it	if	it	matches	your	mental	model.	

That	said,	I’m	clearly	not	alone	in	these	opinions,	because	LazyVim	optionally	provides	a	
different	Kile	management	experience	called	mini.files.	It	is	disabled	by	default.	

mini.files	is	part	of	a	suite	of	fairly	random	Neovim	packages	known	as	mini.nvim.	
These	plugins	are	largely	independent	from	each	other	and	provide	a	lot	of	common	
features	that	in	many	cases	ought	to	ship	with	NeoVim.	In	some	cases,	the	mini.nvim	
plugins	are	inferior	to	other	plugins	that	they	clone,	but	a	number	of	them	are	best	in	class.	
mini.files	is	not	the	only	mini	plugin	that	ships	with	LazyVim,	and	we’ll	touch	on	others	
later.	

The	mini.files	Kile	manager	is	kind	of	like	a	Neovim-native	experience	of	the	columnar	
view	that	is	popular	in	MacOs	Kinder,	among	other	Kile	managers.	The	main	reason	I	like	it	is	
that	editing	the	directory	listing	is	just	like	editing	a	normal	text	buffer.	I	don’t	have	to	
remember	that	a	means	“after”	in	Normal	mode,	but	it	means	“add	Kile/folder”	in	Explorer	
mode.	Instead,	in	mini.Kiles,	I	use	the	o	key	to	“create	a	new	line	below	the	current	line”,	and	
then	enter	the	Kile	name	in	Neovim	Insert	mode.	Later,	I	tell	mini.files	to	sync	my	
changes	and	it	will	create	the	Kile	for	the	new	row.	

In	order	to	use	mini.files,	you	have	to	enable	it	as	a	Lazy	Extra.	I	go	into	more	detail	
about	Lazy	Extras	in	the	next	chapter	(When	I	told	her	the	Kirst	draft	of	this	chapter	was	
over	8100	words	long,	my	editor	said	“Dear	Lord	lol”),	but	the	basic	instructions	are:	

• Type	:LazyExtras<Enter>	
• Move	your	cursor	to	the	line	that	contains	mini.files	(Seek	mode	is	fastest)	
• Press	X	to	install	the	eXtra	
• Wait	a	moment	for	the	plugins	to	install	
• Restart	Neovim	

Using mini.files

Once	installed,	you	can	show	the	mini.Kiles	view	using	<Space>fm	and	<Space>fM.	By	
default,	these	are	not	quite	the	same	as	the	cwd/root	structure	we’ve	seen	in	Telescope	
and	Neo-tree.	Instead,	they	are	listed	in	the	<Space>f	menu	as	follows:	

m -> Open mini.files (Directory of Current File)	
M -> Open mini.files (cwd)	

The	default	mini.files	conKiguration	doesn’t	have	an	open	in	root	option.	I	like	having	the	
ability	to	open	the	directory	of	the	currently	open	Kile,	but	I	don’t	like	losing	the	ability	to	
open	the	root	of	the	current	project.	I	show	how	to	address	this	in	the	next	section	where	
we	discuss	keybindings.	

Instead	of	a	sidebar,	the	mini.files	menu	shows	up	as	columns	of	windows	(known	as	
Miller	columns)	side-by-side.	For	example,	here’s	what	happens	when	I	open	mini.Kiles	to	
the	current	working	directory	of	this	book:	

	

screenshot	

This	book	is	published	as	a	svelte-kit	app.	The	left-hand	pane	shows	the	current	working	
directory,	and	the	right	pane	shows	the	contents	of	the	src	directory,	which	is	the	“focused”	
folder	in	the	left	pane.	

Interacting	with	mini.files	is	very	similar	to	interacting	with	a	standard	vim	window.	
You	can	use	the	j	and	k	keys	to	move	the	cursor	up	and	down.	If	this	places	your	cursor	
over	a	folder,	the	contents	of	that	folder	will	immediately	show	up	to	the	right,	and	if	it	is	
over	a	Kile,	you	will	see	a	preview	of	the	Kile	(by	default,	the	previews	are	smaller	than	what	

I	have	in	these	screenshots;	I’ll	show	you	how	to	change	that	in	the	next	section	if	you	have	
the	screen	real	estate	for	it).	

If	you	want	to	move	“into”	a	folder	to	interact	with	the	contents	of	that	folder	instead,	
simply	press	the	l	key	to	move	“right”.	Here,	I	moved	my	cursor	into	the	src	folder,	which	
immediately	opened	the	Kile	under	the	cursor	in	a	new	preview	window.	

	

screenshot	

Similarly,	pressing	h	will	move	“out”	of	the	current	folder.	If	the	cursor	is	in	the	left-most	
column,	moving	left	will	open	a	new	left-most	column,	so	you	can	navigate	right	up	to	the	
root	of	your	Kile-system	if	you	need	to.	

To	open	a	Kile	in	the	currently	active	Neovim	window,	press	l	on	that	Kile	again.	The	
behaviour	here	may	be	a	bit	surprising;	the	Kile	will	open	under	the	mini.files	view,	but	it	
won’t	hide	the	Kile	menu.	This	allows	you	to	open	multiple	Kiles	before	closing	the	navigator	
(which	can	be	done	with	the	q	key).	

The	beautiful	thing	about	mini.files	compared	to	Neotree	is	that	the	little	windows	act	
like	normal	editors,	and	all	the	navigation	features	you	have	become	used	to	are	available.	
For	example	Seek	mode	can	be	used	to	navigate	to	a	Kile.	Press	the	s	key	and	then	any	
number	of	characters	you	want	to	search	for.	Any	matches	to	the	typed	characters	will	be	
labelled	and	you	can	jump	to	them	by	typing	the	indicated	label.	

Even	modifying	the	Kilesystem	is	exactly	the	same	as	editing	a	normal	buffer.	We	haven’t	
really	covered	editing	yet	(I’m	just	as	surprised	as	you	are),	but	here’s	a	quick	overview:	

• To	rename	a	Kile	or	folder,	navigate	to	the	line	that	has	it,	and	enter	insert	mode	to	
change	or	add	text.	

• Deleting	a	Kile	or	folder	uses	the	command	dd	which	is	the	keybinding	to	delete	an	
entire	line	of	text	in	normal	Neovim	windows.	

• Copy	a	Kile	or	folder	with	yy	the	command	to	copy	(yank)	a	line	of	text	
• Put/paste	a	deleted	or	yanked	Kile	with	p.	

We’ll	discuss	these	commands	and	more	in	Chapter	6.	The	main	point	is	that	pretty	much	
any	navigation	or	editing	command	you	learn	in	the	future	will	work	with	mini.files.	

Saving Filesystem Changes

Any	modiKication	that	you	make	using	these	keybindings	will	not	actually	be	saved	on	the	
Kilesystem	until	you	type	the	=	key,	which	is	a	(rare)	mini.files	speciKic	keybinding.	I	
think	of	it	as	meaning	“make	the	Kilesystem	equal	to	what	I’ve	typed”.	This	will	pop	up	a	
little	window	telling	you	what	actions	mini.files	wants	to	take	on	your	behalf,	such	as	
deleting,	moving,	renaming,	or	copying	Kiles.	You	can	conKirm	or	decline	the	changes	with	a	
y	or	n	(yes	or	no,	of	course).	

I	encourage	you	to	play	with	both	Neo-tree	and	mini.Kiles	until	you	can	make	a	decision	as	
to	which	of	the	two	you	prefer.	Eventually,	you	will	arrive	at	one	of	the	following	
conclusions:	

• You	prefer	Neo-tree	and	don’t	need	mini.files.	In	this	case,	revisit	the	LazyExtras	
mode	and	disable	mini.files	with	the	x	key.	

• You	use	Neo-tree	for	some	interactions	(possibly	things	we	haven’t	covered	yet,	such	
as	navigating	git,	buffers,	or	symbols)	and	mini.files	for	others.	In	this	case,	you	
are	probably	content	with	the	default	LazyVim	conKiguration	of	the	mini.files	
extra.	

• You	are	my	kind	of	weird	and	don’t	want	to	use	Neo-tree	at	all,	preferring	only	
mini.files.This	exact	situation	is	discussed	in	the	next	chapter	as	we	learn	more	
about	conKiguring	plugins.	

Summary

In	this	chapter,	we	learned	not	one,	but	three	different	ways	to	open	Kiles	and	interact	with	
the	Kilesystem	in	LazyVim:	Telescope,	Neo-tree,	and	mini.Kiles.	Each	provides	a	different	
mechanism	for	opening	Kiles,	and	you	will	Kind	some	of	them	more	comfortable	than	others.	

As	a	side-effect	of	studying	these	Kilesystem	tools,	we	learned	a	little	bit	about	conKiguring	
plugins	and	installing	LazyVim	extras.	we	will	go	into	more	detail	of	this	in	the	next	chapter.	

Chapter 5: Configura/on and Plugin Basics

I’ve	mentioned	plugins	a	few	times	previously	and	you	even	got	to	see	the	lazy.nvim	plugin	
manager	in	action	back	in	Chapter	1.	LazyVim	has	a	unique	multi-layered	approach	to	
managing	plugins	that	requires	a	bit	of	description,	but	is	very	elegant	in	practice.	

Installing	plugins	allows	you	to	conKigure	NeoVim	to	do	things	it	can’t	do	by	default.	Plugins	
are	written	in	either	Lua	or	VimScript	(though	most	NeoVim	users	prefer	Lua-based	
plugins).	

The Three Categories of Plugins in LazyVim

The	simplest	plugins	to	use	in	LazyVim	are	pre-installed	by	LazyVim	itself.	You’ve	used	
many	of	them	already.	Some,	such	as	Neo-Tree,	Telescope,	and	lazy.nvim	provide	custom	UI	
components	to	interact	with	them.	Others,	such	as	Klash.nvim	and	which-key	provide	new	
commands	or	modes	to	work	with.	Still	others	operate	quietly	in	the	background	auto-
matching	parenthesis	or	tags	and	drawing	indent	guides.	

These	plugins	are	preconKigured	in	LazyVim	with	sane	defaults.	Because	they	are	so	well	
integrated,	customizing	those	defaults	is	doable,	but	sometimes	requires	a	few	tricks	that	
we	will	cover	in	this	and	later	chapters.	

The	second	category	of	plugin	in	LazyVim	are	the	so-called	“Lazy	Extras”.	These	plugins	are	
not	enabled	by	default,	but	can	be	enabled	with	just	a	couple	of	keystrokes	if	you	want	
them.	Lazy	Extras	exist	to	make	it	easy	to	install	popular	plugins	with	a	conKiguration	that	is	
guaranteed	to	play	nicely	with	the	other	plugins	that	ship	with	LazyVim.	

The	third	category	includes	third-party	plugins	that	LazyVim	has	no	awareness	of.	You	will	
have	to	conKigure	these	plugins	from	scratch	and	do	your	own	due	diligence	to	ensure	that	
keybindings	and	visual	artifacts	don’t	conKlict	with	the	plugins	that	LazyVim	manages.	In	a	
non-LazyVim	conKiguration,	all	plugins	fell	in	this	category,	and	it	could	be	a	headache	to	
maintain	as	plugins	evolved	and	fell	out	of	use	over	time.	In	LazyVim,	relatively	few	plugins	
fall	in	this	category,	so	the	whole	experience	is	much	more	pleasant.	

As	a	speciKic	example	consider	these	three	Neovim	plugins	for	Kile	management,	two	of	
which	we	discussed	in	the	previous	chapter:	

• Neo-tree.nvim	ships	with	LazyVim	and	is	active	by	default.	The	LazyVim	
conKiguration	for	Neo-tree	does	not	conKlict	with	other	LazyVim	plugins	by	default.	

• mini.files	ships	as	a	Lazy	Extra,	and	is	basically	a	“one	click”	(or,	since	this	is	vim	
we’re	talking	about,	one	keypress!)	install	that	is	guaranteed	to	work	with	LazyVim.	

• oil.nvim	is	an	alternative	plugin	for	Kilesystem	management	that	LazyVim	does	not	
explicitly	support.	You	can	install	it	in	LazyVim	with	a	few	lines	of	conKiguration,	but	
it’s	not	quite	as	easy	to	set	up	as	mini.files	and	there	is	no	guarantee	it	won’t	
have	conKlicts	you	need	to	sort	out	yourself.	

From	NeoVim’s	point	of	view,	all	these	plugins	are	exactly	the	same,	as	NeoVim	only	knows	
about	third-party	plugins.	LazyVim	just	comes	with	a	bit	of	extra	structure	that	you	need	to	
think	about	when	using	plugins.	Usually	this	structure	simpliKies	things,	but	sometimes	it	
gets	in	the	way.	

Lazy Extras

In	the	previous	chapter,	I	covered	how	to	use	mini.files,	but	I	was	pretty	terse	on	the	
installation	instructions.	Now	we’ll	get	to	dive	deep.	

The	Lazy	Extras	mode	can	be	accessed	by	pressing	x	from	the	dashboard.	If	you	aren’t	on	
the	dashboard,	you’ll	need	to	enter	command	mode	with	:	and	type	LazyExtras	followed	
by	the	usual	Enter	to	conKirm	a	command	(Incidentally,	you	can	also	show	the	dashboard	
at	any	time	by	typing	the	command	:Dashboard).	

Either	way,	you’ll	be	presented	with	a	list	of	possible	plugins	to	install.	On	my	setup	this	
looks	as	follows:	

	

screenshot	

I’ve	installed	over	a	dozen	extras	at	the	moment,	mostly	for	the	various	programming	
languages	I	dabble	in.	You	can	navigate	this	Kile	using	all	the	standard	navigation	commands	
such	as	j	and	k	s.	

No	matter	how	you	get	there,	once	your	cursor	is	on	the	extra	you	want	to	install	(such	as	
editor.mini-files)	line,	just	hit	the	x	key	to	install	the	extra.	If	you	want	to	uninstall	it,	
do	the	same	thing;	move	to	the	appropriate	line	(now	under	the	list	of	Enabled	extras),	and	
hit	x	to	disable	the	extra.	The	mnemonic	here,	of	course	is	that	x	means	“Extra”.	

You	may	need	to	quit	and	restart	Neovim	for	lazy.nvim	to	pick	up	that	the	extra	has	been	
installed	and	sync	it’s	dependencies.	

While	we’re	in	the	LazyExtras	screen,	I	recommend	enabling	the	lang.*	extras	for	
whichever	programming	languages	you	use	most	frequently.	I	wouldn’t	install	any	other	
extras	until	you’ve	either	encountered	them	later	in	this	book	or	had	a	chance	to	research	
them	after	you	Kinish	the	book.	Otherwise,	they	may	change	behaviours	in	ways	that	I	won’t	
have	the	foresight	to	write	about.	

You	can	Kind	more	information	on	each	extra	by	visiting	https://lazyvim.org	and	clicking	
the	“Extras”	menu	item	on	the	left	menu	bar.	It	includes	links	to	the	list	of	plugins	each	extra	
installs	as	well	as	the	conKiguration	LazyVim	brings	for	that	extra.	

Disabling a Built-in Plugin

Sooner	or	later,	you’re	going	to	want	to	edit	your	LazyVim	conKiguration.	The	out-of-the-box	
defaults	are	wonderful,	but	the	odds	are	that	they	don’t	100%	exactly	match	your	personal	
needs	(unless	you	are	the	LazyVim	maintainer,	in	which	case,	I	am	compelled	to	say,	“Hello,	
folke,	I	love	LazyVim!”).	

While	the	vast	majority	of	LazyVim’s	default	plugins	are	no-brainers	that	you	want	to	keep,	
you	may	Kind	there	are	one	or	two	plugins	that	you	just	don’t	need.	In	most	cases,	it	doesn’t	
actually	matter,	since	LazyVim	only	loads	plugins	when	you	actually	use	them,	so	you	can	
just	ignore	the	ones	that	aren’t	relevant	to	you.	

In	my	case,	the	one	plugin	I	have	disabled	is	Neo-Tree,	as	I	foreshadowed	in	the	previous	
chapter.	

The	LazyVim	conKiguration	can	be	opened	from	the	dashboard	by	simply	pressing	the	c	key	
.	Or	you	can	use	Space	Mode	to	access	the	conKiguration	Kiles	at	any	time	using	<Space>fc	
for	“Find	ConKig	Files”.	

This	will	load	the	lazyvim	conKig	folder	in	Telescope.	This	folder	is	typically	
$HOME/.config/nvim.	Neovim	loads	$HOME/.config/nvim/init.lua	by	default,	and	if	
you	weren’t	using	LazyVim,	this	is	where	you	would	do	all	your	conKiguration.	

With	LazyVim,	init.lua	just	uses	the	lua	require	statement	to	include	the	LazyVim	
conKiguration	infrastructure.	You	will	normally	not	have	to	touch	this	Kile,	instead	following	
the	“LazyVim	way”.	

In	addition	to	a	barebones	init.lua,	LazyVim	has	put	a	few	conKiguration	Kiles	and	a	bit	of	
folder	structure	in	the	conKiguration	directory.	

For	now,	the	main	thing	we	need	to	know	is	that	any	lua	Kiles	inside	the	lua/plugins	
subdirectory	will	be	automatically	loaded	by	LazyVim,	no	matter	what	their	name	is.	I	have	
a	number	of	different	Kiles	in	this	folder	for	my	custom	conKigurations.	

https://lazyvim.org

I	call	the	one	that	holds	my	disabled	plugins	disabled.lua.	The	easiest	way	to	create	this	
Kile	is	to	open	one	of	the	existing	conKig	Kiles	and	use	either	neo-tree	or	mini.Kiles	to	create	a	
new	Kile,	as	described	in	the	previous	chapter.	

When	I	created	my	disabled.lua	Kile	in	the	lua/plugins	directory,	my	intention	was	to	
collect	all	the	LazyVim	plugins	I	don’t	want	in	it.	Turns	out	that’s	a	really	short	list!	The	
contents	of	this	Kile	is	simply:	

return {	
 { "nvim-neo-tree/neo-tree.nvim", enabled = false },	
}	

If	there	are	any	other	plugins	that	LazyVim	enables	by	default	that	you	don’t	want	to	use,	
just	follow	the	same	syntax.	The	Kirst	argument	in	the	lua	table	is	a	string	containing	the	
github	repo	(with	owner)	you	want	to	disable.	The	second	argument	is	to	set	enabled =
false.	That’s	it!	

Tip:	You	will	inevitably	forget	the	return	statement	at	the	beginning	of	a	plugins	
Kile	at	some	point.	Now	you	know	to	watch	out	for	it.	

If	you	don’t	know	the	Lua	language…	honestly,	don’t	worry	about	it.	I’ve	never	formally	
studied	it,	but	I’ve	picked	up	enough	by	osmosis	to	easily	maintain	my	Neovim	
conKiguration.	

If	you’re	less	foolish	than	me,	you	might	want	to	type	:help lua	and	read	the	ofKicial	
Neovim	docs	on	the	topic.	followed	by	:help lua-guide-api.	

Modifying Keybindings (example)

Keybindings	are	one	of	the	few	things	I	don’t	love	about	working	with	LazyVim,	although	
it’s	not	strictly	LazyVim’s	fault.	I	just	never	quite	know	where	to	deKine	the	damn	
keybindings.	

There	are	basically	three	possible	places	to	conKigure	keybindings,	depending	on	how	any	
given	plugin	is	conKigured:	

• In	.config/nvim/lua/config/keymaps.lua.	This	is	where	you	conKigure	or	
modify	keybindings	that	are	not	speciKic	to	plugins,	but	rather	modify	core	NeoVim	
functionality.	But	sometimes,	the	plugin	is	conKigured	such	that	you	need	to	set	up	
the	plugin	keybindings	in	this	Kile,	too.	

• In	the	keys	Kield	of	the	lua	table	(in	Lua,	a	“table”	is	like	a	record	or	dict	in	many	
other	dynamic	languages)	passed	to	a	plugin.	This	is	typically	where	you	map	global	

normal	mode	keybindings	to	set	up	a	plugin.	This	is	what	we	will	do	with	
mini.files.	

• In	the	opts	(options)	argument	passed	into	a	plugin’s	confugration.	The	format	of	
the	options	for	any	one	plugin	are	plugin	speciKic,	but	many	plugins	prefer	to	set	up	
keymaps	on	your	behalf	through	options	instead	of	having	you	do	the	mapping	
yourself.	This	is	especially	true	if	the	keymaps	deKine	a	different	“mode”	or	only	
apply	if	the	plugin	is	currently	open	or	active.	I’ll	give	an	example	of	this	with	
mini.files	as	well.	

To	demonstrate,	I	want	to	“Kix”	the	fact	that	mini	Kiles	doesn’t	have	a	“open	in	root”	option.	I	
like	the	“open	in	directory	of	current	Kile”	option,	but	I	also	want	to	be	able	to	open	in	the	
root	directory.	

Since	we’ve	disabled	neo-tree,	I’m	going	to	steal	the	<Space>e	and	<Space>E	
keybindings	and	reuse	them	for	mini.files,	then	I’ll	remap	the	existing	<Space>fm	
keybinding	to	open	the	root	so	I	can	access	all	three	modes.	You	can,	of	course,	choose	
different	keybindings	if	they	map	better	to	your	mental	model	or	you	are	keeping	neo-tree	
around.	

Using	mini.Kiles,	I	created	a	new	Kile	named	extend-mini-files.lua	in	my	.config/
nvim/lua/config/plugins/	directory.	As	with	the	disabled.lua	Kile,	this	Kile	can	be	
named	anything	so	long	as	it’s	in	the	plugins	directory.	I	have	a	habit	of	preKixing	any	
conKiguration	that	I	am	using	to	overwrite	the	defaults	provided	by	LazyVim	with	the	word	
extend.	

This	makes	it	easy	to	distinguish	it	from	non-LazyVim	plugins	I’ve	installed	when	I’m	listing	
the	directory	using	mini.files	or	Telescope.	

Inside	this	new	Kile,	I	used	this	code:	

local Util = require("lazyvim.util")	
	
return {	
 "echasnovski/mini.files",	
 keys = {	
 {	
 "<leader>e",	
 function()	
 require("mini.files").open(vim.api.nvim_buf_get_name(0), true)	
 end,	
 desc = "Open mini.files (directory of current file)",	
 },	

 {	
 "<leader>E",	
 function()	
 require("mini.files").open(vim.loop.cwd(), true)	
 end,	
 desc = "Open mini.files (cwd)",	
 },	
 {	
 "<leader>fm",	
 function()	
 require("mini.files").open(Util.root(), true)	
 end,	
 desc = "Open mini.files (root)",	
 },	
 },	
}	

The	Kirst	line	imports	the	lazyvim.util	module	so	we	can	use	the	handy	Util.root()	
function	it	provides.	I	found	this	by	reading	through	the	default	conKiguration	for	the	
Telescope	Kind	Kiles	and	Neo-tree	plugins,	which	is	conveniently	provided	on	the	LazyVim	
website.	

Then	we	return	a	Lua	table,	wrapped	in	curly	braces.	Lua	tables	can	act	as	an	array	and	a	
dictionary	at	the	same	time.	In	this	case,	the	Kirst	element	in	the	table	is	the	string	
"echasnovski/mini.files".	It	doesn’t	have	a	named	key,	so	it’s	kind	of	like	a	“positional	
argument”.	

The	second	element	in	the	table	is	more	like	a	“named	argument”	in	that	it	is	indexed	with	
the	name	keys,	and	the	value	is	another	Lua	table.	However,	the	second	table	acts	more	like	
an	“array”	of	three	values	(three	more	separate	lua	tables)	because	it	doesn’t	have	named	
indices.	

It	is	important	to	understand	that	the	keys	Kield	is	merged	with	the	keys	that	are	provided	
by	the	default	LazyVim	(extras)	conKiguration	for	mini.files.	If	there	are	conKlicts	(such	
as	with	<space>fm),	my	values	take	precedence	over	the	defaults.	

This	is	a	powerful	feature	of	LazyVim	that	allows	you	to	use	hosted	conKiguration	provided	
by	LazyVim	but	override	it	as	needed.	Older	Neovim	distros	tended	not	to	have	this	level	
Klexibility.	

To	be	clear,	keys	is	a	LazyVim	concept	(technically,	it’s	actually	part	of	the	underlying	
lazy.nvim	plugin	manager).	Any	plugin	conKiguration	can	have	a	keys	array	table,	and	

those	keybindings	will	be	merged	with	the	default	NeoVim	keybindings,	the	LazyVim	
keybindings,	your	custom	global	keybindings,	AND	any	other	plugin	keybindings.	

Yes,	that’s	a	lot	of	potential	for	conKlicts,	which	is	why	I’m	so	glad	LazyVim	has	done	most	of	
the	conKiguration	for	me!	

Structure of a keys entry

Each	item	in	the	keys	table	is	another	Lua	table	with	(in	this	case)	three	Kields.	The	Kirst	
two	Kields	are	positional	and	represent	the	keybinding	name	and	the	lua	callback	function	
that	gets	called	whenever	that	keybinding	is	invoked.	The	third	Kield	is	a	named	Kield,	desc	
and	provides	a	string	description	that	will	be	shown	in	the	Space	mode	menu.	

The	keybinding	sequence	in	the	Kirst	entry	is	using	a	standard	syntax	that	comes	from	Vim.	
Recall	that	<leader>	is	an	old	Vim	concept	that	allows	you	to	conKigure	which	key	is	used	
as	the	preKix	for	custom	keybindings.	In	LazyVim	(and	indeed,	for	most	modern	Neovim	
users),	the	leader	is	<Space>.	Special	keys	are	indicated	to	Vim’s	keybinding	engine	using	
angle	brackets,	so	you	will	often	see	notations	such	as	<Space>,	<Right>,	<Left>	or	<BS>.	

After	the	<leader>	string,	we	include	any	additional	keys	that	need	to	be	pressed.	For	the	
simple	ones,	we	have	e	and	E	to	replace	the	Neo-tree	keybindings	we	disabled	with	new	
mini.files	keybindings.	The	third	one	is	a	bit	more	complicated,	as	the	f	indicates	that	
this	action	will	be	available	under	the	file/find	submenu	in	Space	mode,	and	the	m	
indicates	which	letter	will	be	in	this	menu.	

For	the	callbacks,	we	use	Lua	functions,	which	always	start	with	function	and	end	with	
end.	These	are	anonymous	(unnamed)	functions,	and	they	don’t	accept	any	parameters	
inside	the	parentheses.	The	function	bodies	we	call	speciKic	code	to	open	mini.files	the	
way	we	want.	In	two	cases	I	just	copied	this	code	from	LazyVim’s	default	mini.files	
conKiguration,	and	in	the	third,	I	cobbled	it	together	by	combining	code	from	the	Neo-tree	
and	mini.files	conKigurations.	

Customizing the mini.files Op/ons

As	I	mentioned,	the	keys	table	is	merged	with	the	default	keys	table	that	LazyVim	has	
conKigured	for	mini.files.	Similarly,	most	NeoVim	plugins	can	be	conKigured	with	an	
opts	table	that	contains	custom	conKiguration	speciKic	to	that	plugin.	If	you	supply	an	opts	
table,	it	will	be	merged	with	the	default	LazyVim	one	(if	there	is	one).	

You’ll	need	to	read	each	plugin’s	documentation	(often	available	on	Github,	and	usually	
available	with	:help plugin-name)	to	know	exactly	what	options	are	available	for	each	
plugin.	You’ll	also	need	to	review	the	default	conKiguration	that	LazyVim	is	setting	up	for	
that	plugin	so	you	understand	how	it	will	merge.	

In	my	case,	I	pass	the	following	opts	array	to	mini.files:	

return {	
 "echasnovski/mini.files",	
 keys = {	
 -- the keybindings from above	
 },	
 opts = {	
 mappings = {	
 go_in = "<Right>",	
 go_out = "<Left>",	
 },	
 windows = {	
 width_nofocus = 20,	
 width_focus = 50,	
 width_preview = 100,	
 },	
 options = {	
 use_as_default_explorer = true,	
 },	
 },	
}	

The	mappings	table	in	mini.files	is	used	to	override	the	default	keymappings	that	are	
active	while	the	mini.files	view	is	open.	This	is	different	from	the	global	keymaps	we	
deKined	earlier	to	open	mini.files.	In	my	case,	I	have	mapped	go_in	and	go_out	to	use	
the	arrow	keys	instead	of	h	and	l	because	of	the	left-handed	Dvorak	Kinesis	weirdness	I	
described	previously.	I	don’t	recommend	you	make	this	change;	h	and	l	will	work	better	for	
most	anybody	who	isn’t	me.	

The	window	options	are	there	because	I	have	a	32”	6k	monitor,	which	means	I	can	afford	to	
have	larger-than-normal	explorer	columns.	Refer	to	the	mini.files	help	for	more	
information	on	these	options.	

So	now	you	know	a	little	bit	about	conKiguring	plugins	in	LazyVim.	It	is	both	a	little	bit	
easier	and	a	little	bit	harder	than	conKiguring	plugins	from	scratch:	

• It	is	easier	because	you	only	need	to	change	the	values	that	are	non-default,	instead	
of	setting	up	an	entire	conKiguration,	and	LazyVim	comes	with	very	sane	defaults.	

• But	it	is	harder	because	you	sometimes	have	to	think	about	how	the	option	and	
keybinding	merging	happens,	which	wouldn’t	be	necessary	if	you	just	had	one	great	

big	conKiguration	object	to	begin	with.	This	merging	can	get	quite	tricky	for	plugins	
that	have	complicated	default	LazyVim	conKigurations.	

Modifying Exis/ng Op/ons

Sometimes	the	“merging”	behaviour	LazyVim	uses	to	overwrite	options	with	the	ones	you	
provide	in	your	plugin	overrides	is	too	simplistic.	This	most	often	happens	when	you	are	
modifying	a	plugin	that	calls	or	deKines	a	function	for	options	behaviour	instead	of	
customizing	it.	

To	support	this	situation,	the	opts	entry	in	a	lazy.nvim	plugin’s	conKiguration	table	can	be	
a	function	instead	of	a	static	table.	The	function	accepts	one	argument,	which	is	the	
previous	opts	table	as	it	was	conKigured	by	LazyVim.	Your	function	needs	to	modify	this	
table	to	suit	your	desired	behaviour.	Note	that	it	does	not	return	a	new	opts	table;	it	needs	
to	modify	the	one	that	was	passed	in.	

For	example,	the	default	LazyVim	conKiguration	for	the	nvim-cmp	plugin	is	a	pretty	long	
and	complicated	function.	The	nvim-cmp	plugin	is	responsible	for	the	completion	pop-up	
menu	that	provides	suggestions	as	you	type.	It	is	an	insanely	useful	feature,	but	I	don’t	like	
that	by	default	(in	LazyVim),	selecting	a	completion	is	done	with	an	Enter	keypress.	This	
drives	me	nuts	when	editing	text	as	I	am	right	now	because	I	press	enter	for	new	lines	all	
the	time,	often	ignoring	the	pop-up.	

There	are	a	couple	recipes	for	modifying	this	behaviour	in	the	LazyVim	docs,	and	other	
recipes	you	can	try	in	the	nvim-cmp	README.	In	my	case,	I’ve	conKigured	it	as	follows:	

return {	
 {	
 "hrsh7th/nvim-cmp",	
 ---@param opts cmp.ConfigSchema	
 opts = function(_, opts)	
 local cmp = require("cmp")	
	
 opts.mapping = vim.tbl_extend("force", opts.mapping, {	
 ["<Right>"] = cmp.mapping.confirm({ select = true }),	
 ["<CR>"] = function(fallback)	
 cmp.abort()	
 fallback()	
 end,	
 })	
 end,	

 },	
}	

This	opts	function	accepts	the	LazyVim-deKined	opts	table	as	its	second	parameter.	My	
code	changes	those	opts	using	the	tbl_extend	function	provided	by	Neovim.	I	add	a	new	
["<Right>"]	key	to	accept	the	suggestion	(this	matches	Kish	shell	behaviour)	and	
overwrite	the	<CR>	key	with	abort	completion	behavior.	

This	is	harder	to	maintain	than	if	I	just	had	the	whole	conKiguration	the	way	I	wanted	it	in	
the	Kirst	place.	But	I	am	willing	to	accept	that	tradeoff	for	all	the	places	that	LazyVim	
conKigures	things	better	than	I	would	have	done	on	my	own.	

Installing third-party plugins

Installing	a	third-party	plugin	is	little	different	from	conKiguring	a	Lazy-Vim	provided	
plugin,	except	that	you	don’t	have	to	worry	about	how	the	keys	and	opts	are	merged	with	a	
default	conKig.	

Simply	create	a	new	Lua	Kile	in	the	plugins	directory	(named	appropriately	for	the	plugin).	
Inside	the	Kile,	return	a	Lua	table	where	the	Kirst	entry	is	the	GitHub	repo	and	name	of	the	
plugin,	with	other	conKiguration	(opts	and	keys,	among	others)	after	that	name.	

For	example,	I	like	the	guess-indent.nvim	plugin	to	set	my	shift	width	based	on	the	
contents	of	the	Kile	I	am	currently	editing.	It	is	maintained	by	the	github	user	nmac427,	so	
my	plugins/guess-indent.lua	Kile	looks	like	this:	

return {	
 "nmac427/guess-indent.nvim",	
 opts = { auto_cmd = true, override_editorconfig = true },	
}	

The	opts	table	depends	entirely	on	what	the	plugin	expects.	In	this	case,	I	read	the	guess-
indent.nvim	README	and	found	two	options	that	I	wanted	to	set.	

Most	modern	Lua	plugins	will	be	documented	as	having	to	call	a	setup	function	with	a	Lua	
table	containing	the	conKiguration.	If	the	plugin	you	are	trying	to	set	up	does	not	have	
explicit	Lazy.nvim	instructions,	don’t	worry!	Whatever	gets	passed	into	that	setup	function	
is	what	you	need	to	include	in	the	opts	passed	to	the	LazyVim	plugin	manager.	

Another	third-party	plugin	I	recommend	is	chrisgrieser/nvim-spider.	I	have	a	Kile	
named	nvim-spider.lua	in	my	plugins	directory	as	follows:	

return {	
 "chrisgrieser/nvim-spider",	

 keys = {	
 {	
 "w",	
 "<cmd>lua require('spider').motion('w')<CR>",	
 mode = { "n", "o", "x" },	
 desc = "Move to end of word",	
 },	
 {	
 "e",	
 "<cmd>lua require('spider').motion('e')<CR>",	
 mode = { "n", "o", "x" },	
 desc = "Move to start of next word",	
 },	
 {	
 "b",	
 "<cmd>lua require('spider').motion('b')<CR>",	
 mode = { "n", "o", "x" },	
 desc = "Move to start of previous word",	
 },	
 },	
}	

This	plugin	doesn’t	automatically	set	up	keybindings,	so	I	pass	a	keys =	table	to	the	plugin	
conKiguration.	This	array	is	not	passed	to	the	plugin.	Rather,	the	keys	are	parsed	by	the	
lazy.nvim	plugin	manager	and	added	to	the	global	keybindings.	It	is	convenient	to	keep	the	
keys	with	the	plugin	so	all	the	conKiguration	is	in	one	place.	

I	am	satisKied	with	the	default	options	that	nvim-spider	passes	to	its	setup	function	
(after	reading	the	README),	so	I	don’t	have	to	pass	an	opts	array.	

The	best	resource	for	Kinding	third-party	plugins	is	the	github	repository	rockerBOO/
awesome-neovim.	The	list	is	well-maintained	and	(most	importantly)	pruned	regularly,	so	
there	are	no	outdated	or	unmaintained	plugins	on	the	list.	

In	practice,	LazyVim	already	ships	with	the	best-in-class	versions	of	most	plugins	(built-in	
or	as	extras),	so	you	won’t	have	to	add	many	of	them,	but	if	you	come	across	any	“I	wish	
LazyVim	could…”	scenarios,	the	answer	is	probably	“it	does	and	the	plugin	to	do	it	is	listed	
in	the	Awesome	Neovim	repo”.	

https://github.com/rockerBOO/awesome-neovim
https://github.com/rockerBOO/awesome-neovim

Summary

In	this	chapter,	we	learned	a	little	bit	about	how	LazyVim	integrates	with	the	wider	NeoVim	
plugin	ecosystem.	It	provides	sane	default	plugins	and	conKiguration,	but	makes	it	easy	to	
customize	that	conKiguration	for	your	own	needs.	

We	learned	that	built-in,	extras,	and	unknown	third	party	plugins	are	all	treated	slightly	
differently	(though	consistently),	and	saw	examples	of	how	to	install	some	of	the	plugins	I	
personally	Kind	indispensable.	

Now	that	you	know	how	to	open	Kiles	and	conKigure	plugins,	we	can	get	back	to	some	of	the	
nuts	and	bolts	of	modal	editing.	You	already	know	how	to	switch	between	Normal	and	
Insert	mode	and	you	can	navigate	around	your	code.	In	the	next	chapter,	we’ll	cover	some	
basic	editing	features	that	blur	the	line	between	navigating	and	inserting	text.	

Basic Edi/ng

Armed	with	the	navigation	keybindings	you’ve	already	learned	and	the	ability	to	enter	and	
leave	insert	mode	at	will,	your	Vim	editing	experience	is	getting	pretty	close	to	on	par	with	
what	you	might	be	used	to	in	non-modal	editors.	

However,	moving	around	and	inserting	text	is	a	very	small	part	of	the	life	of	a	software	
developer.	More	often,	you	need	to	edit	text.	Deleting	code,	changing	code,	refactoring	code	
moving	code	around.	It’s	the	majority	of	what	we	do.	

Yes,	you	can	do	all	of	these	things	by	navigating	to	where	you	want	to,	and	entering	insert	
mode.	The	delete	and	backspace	keys	do	the	same	thing	in	insert	mode	that	they	do	in	
other	editors.	But	there	are	far	more	efKicient	tools.	

The	best	part	is	that	you	already	know	most	of	what	you	need	to	take	advantage	of	very	
powerful	editing	commands!	

The Vim Command Mental Model

The	navigation	commands	such	as	s	and	f	and	hjkl	and	web	that	you	already	know	are	
collectively	known	as	motion	commands.	They	move	the	cursor	from	its	current	location	to	
a	new	location.	

Most	motion	commands	can	be	preKixed	with	a	count,	so	the	navigation	model	is	always	
<count><motion>.	The	effect	of	a	count	is	usually	to	repeat	the	motion	a	certain	number	
of	times,	although	some	commands	such	as	Shift-G	for	“Go	to	line”	will	use	the	count	as	
an	absolute	value	instead.	If	the	count	is	blank,	the	“default”	count	is	typically	1.	Even	a	Seek	

command	which	uses	labels	is	allowed	to	be	preKixed	with	a	count	(although	the	count	will	
be	ignored).	

The	<count><motion>	commands	are	great	for	navigation,	which	is	all	we’ve	used	them	
for	so	far,	but	they	can	also	be	combined	with	a	verb	to	do	something	to	the	text	between	
the	cursor	and	the	location	the	motion	would	move	you	to.	

Verbs	come	Kirst,	so	the	structure	is	always	<verb><count><motion>.	Navigation	is	the	
“default”	verb,	so	if	you	leave	the	verb	blank	(i.e.	skip	it),	your	cursor	moves	to	the	location	
indicated	by	the	motion.	We’ll	discuss	several	important	verbs	in	this	chapter.	

But	the	model	keeps	growing!	It	turns	out,	verbs	can	also	be	counted.	The	syntax	becomes	
<count><verb><count><motion>.	I	have	never	in	my	life	used	all	four	of	those	in	one	
command,	however.	Typically	you	would	either	do	<count><verb><motion>	OR	
<verb><count><motion>.	

This	is	starting	to	look	like	a	full	Kledged	grammar	(spoiler	alert:	it	is).	

This	model	is	nice	because	it	allows	you	to	divide	and	conquer	your	learning	strategy,	and	
reuse	knowledge	as	you	learn	more.	First	you	learned	motion	commands.	Then	you	learned	
counts.	Now	you	will	learn	verbs.	If	you	learn	new	motion	commands	or	new	verbs	in	the	
future,	you	can	mix	them	with	all	the	verbs	and	motions	you	already	know	and	they	should	
behave	in	a	predictable	way.	

Various	plugins	try	to	mimic	this	strategy,	and,	well,	most	are	successful.	My	main	
complaint	with	Neo-tree	is	that	it	doesn’t	operate	with	the	<verb><motion>	mental	
model,	but	Mini.files	does.	Similarly,	some	folks	argue	that	Seek	mode	violates	the	vim	
mental	model	because	counts	don’t	make	sense.	My	opinion	is	that	Seek	mode	simply	
transcends	counts,	but	it	still	combines	cleanly	with	verbs	so	it	is	a	valid	vim	model.	

A Note on Insert Mode

Like	all	models,	this	one	is	not	perfect.	For	example,	you	can	use	counts	with	the	i,	I,	a,	and	
A	commands,	but	it’s	clear	that	“enter	insert	mode”	is	neither	a	motion	nor	a	verb.	

For	example,	if	you	type	5ifoo<Escape>,	Neovim	will	insert	foofoofoofoofoo	for	you.	
That	may	not	seem	very	useful,	but	if	you	ever	want	an	80	character	*	ruler	to	underline	a	
heading,	80i*<Escape>	is	pretty	nifty!	

But	the	<count>i	“not-motion”	commands	cannot	be	combined	with	verbs	like	the	
navigation	commands	you’ve	learned,	so	it’s	important	to	know	the	limits	of	the	model.	

So	now	that	you	understand	how	the	motions	you	already	know	can	combine	with	verbs	to	
perform	actions	other	than	navigation,	you	just	need	to	learn	some	verbs.	

Dele/ng Text

I’ve	previewed	this	a	couple	times	already,	and	even	if	I	hadn’t,	you	can	probably	guess	that	
the	verb	for	deleting	text	is	d.	

So	where	motion	will	take	you	to	a	speciKic	location	in	the	code,	d<motion>	will	delete	all	
the	text	between	the	cursor	and	that	location.	Here	are	some	examples:	

• dh	to	delete	the	character	to	the	left	of	the	cursor.	
• d3w	to	delete	three	words.	
• 3dw	to	delete	one	word,	three	times.	
• d^	to	delete	from	the	cursor	to	the	beginning	of	the	line.	
• d2fe	to	delete	all	text	between	the	cursor	location	and	the	second	e	after	the	cursor,	

including	that	second	e.	
• d2Ta	to	delete	all	text	between	the	cursor	and	the	second	a	behind	the	cursor,	not	

including	that	second	a.	
• dsfoos	to	delete	text	between	the	current	cursor	position	and	the	label	s	that	pops	

up	when	you	use	Seek	mode	to	seek	to	foo.	Note	that	Seek	mode	always	jumps	to	
the	beginning	of	the	word	you	searched	for.	This	means	that	if	the	foo	you	jump	to	is	
after	the	current	cursor	location,	the	oo	will	not	be	deleted,	but	the	f	will.	But	if	the	
foo	you	jump	to	is	before	the	current	cursor	location,	all	three	letters	of	foo	will	be	
deleted.	

If	any	of	those	are	surprising,	ignore	the	d	and	refer	back	to	earlier	chapters	to	refresh	your	
memory	of	the	motions.	

So	d	will	work	with	all	the	motion	commands	you	know,	as	well	as	all	the	motion	
commands	you	don’t	yet,	and	all	the	motion	commands	that	are	deKined	by	plugins	you	
haven’t	yet	installed.	

When	the	delete	command	is	completed,	Neovim	will	still	be	in	Normal	mode,	and	you	can	
immediately	perform	any	other	<verb><motion><pair>	combination.	

Changing Text

Sometimes	you	just	want	to	delete	text,	but	another	common	task	is	editing	text.	Replace	a	
word	with	another	word,	change	spelling	(coincidentally,	I	just	misspelled	“change”),	delete	
the	rest	of	the	paragraph	and	replace	it	with	something	new,	etc.	

This	can	easily	be	handled	by	combining	delete	and	insert	mode	(e.g.	dwi	will	delete	a	word	
and	enter	insert	mode.)	However,	you	can	save	a	keystroke	by	using	the	c	verb,	which	

means	“change”.	If	you	replace	the	d	in	each	of	the	examples	I	outlined	above	with	a	c,	you	
will	effectively	get	“delete	the	text	and	immediately	enter	insert	mode.”	

Opera/ng to end of the current line

It	is	very	common	to	want	to	delete	or	change	from	the	cursor	position	to	the	end	of	the	
current	line,	leaving	the	beginning	of	the	line	intact.	These	actions	happen	more	often	than	
you	would	expect	in	source	code	editing,	so	there	is	a	shortcut	for	them.	

Yes	you	could	d$	and	c$	to	delete	or	change	to	the	end	of	the	line,	since	$	is	the	“jump	to	
end	of	line”	motion.	That	is	the	“correct”	format	for	the	mental	model.	However,	because	
this	is	such	a	common	operation,	you	can	“cheat”	with	one	fewer	keystrokes	and	just	use	
Shift-D	or	Shift-C	instead.	

Note	that	there	is	no	inverse	shortcut	verb	for	“delete	to	the	beginning	of	the	line”,	so	you’ll	
have	to	use	d^	or	d0	instead,	where	^	is	the	motion	to	jump	to	the	Kirst	non-blank	character	
and	0	is	the	motion	to	jump	to	the	Kirst	column.	

Opera/ng on en/re lines

Another	common	action	is	to	change	or	delete	an	entire	line	of	text.	So	much	so,	in	fact,	that	
there	are	special	motions	for	“the	whole	line”.	These	motions	are	accessed	by	duplicating	
the	verb.	This	is	another	place	where	the	mental	model	kind	of	breaks	down;	the	
interpretation	of	the	motion	depends	on	the	verb.	

In	practice,	this	just	means	that	dd	deletes	an	entire	line	and	cc	deletes	it	and	enters	insert	
mode.	These	are	nice	and	easy	to	type,	so	it	makes	for	a	nice	shorthand.	

You	can	combine	these	bespoke	motions	with	counts.	d3d	will	delete	three	lines,	and	3dd	
will	delete	one	line	three	times	(which	is	faster	to	type	because	you	don’t	have	to	move	your	
Kinger	off	of	d	to	hit	it	twice).	Yes,	that	has	the	same	outcome	either	way,	but	the	model	is	
such	that	you	can	use	either	of	them.	Note	that	there	are	situations	where	the	two	formats	
may	have	subtly	different	behaviours,	although	in	practice	I	have	never	encountered	
surprises.	

Some shortcuts for modifying individual characters

Another	common	operation	is	to	perform	a	delete	or	change	operation	on	a	single	character	
or	speciKic	number	of	characters.	You	could	do	this	using	dl	to	delete	the	character	under	
the	cursor	or	4dl	to	delete	that	character	and	the	three	characters	that	come	after	it.	
However,	because	you	do	this	so	often,	there	is	a	shorthand	verb	that	doesn’t	have	a	motion	
(or	rather,	the	motion	is	implied):	x.	For	example,	you	can	use	x	to	delete	an	extraneous	u	in	
words	like	behaviour	if	your	editor	is	from	the	USA	but	you	live	in	a	member	of	the	

Commonwealth.	The	single	letter	will	be	deleted,	and	you’ll	be	back	in	normal	mode	ready	
to	proceed.	

The	x	command	can	be	used	with	a	count,	so	if	you	want	to	delete	Kive	characters	starting	
with	the	one	under	the	cursor,	just	use	5x.	

If	you	need	to	go	the	other	direction	and	delete	characters	before	the	cursor,	use	Shift-X.	
This,	too,	can	have	a	count,	and	it	will	basically	delete	that	many	characters	to	the	left.	I	
rarely	use	this,	since	the	shift	brings	us	up	to	two	keystrokes	anyway,	and	hx	or	d4h	is	no	
harder.	

If,	instead	of	deleting,	you	need	to	replace	a	character	with	a	different	character,	use	the	r	
command.	This	command	will	brieKly	enter	insert	mode	while	you	type	one	character,	then	
immediately	return	to	normal	mode.	Much	fewer	keystrokes	for	a	common	operation	
(spelling	errors	are	common,	right?	It’s	not	just	me?)	than	something	like	cle<Escape>.	
Using	r	with	a	count	is	possible,	but	the	behaviour	is	kind	of	unhelpful:	it	will	replace	the	
character	under	the	cursor	and	the	appropriate	number	of	characters	after	that	character	
with	the	same	letter.	The	only	place	I	can	imagine	this	being	helpful	is	when	you	copy-paste	
a	password	prompt	from	somewhere	and	need	to	replace	all	the	characters	in	the	password	
with	*.	

Another	common	operation	is	deleting	the	newline	at	the	end	of	the	current	line.	Use	the	
Shift-J	(j	stands	for	“Join	Lines”)	command	from	anywhere	in	the	line.	I	use	this	one	a	
lot.	If	you	need	to	merge	multiple	consecutive	lines	together,	Shift-J	takes	a	count.	It	
generally	does	the	right	thing	around	whitespace	(replacing	indentation	with	a	single	
space),	but	if	you	need	to	do	a	join	without	modifying	whitespace,	use	the	two-character	
combination	gJ.	

Manipula/ng Case

If	you	need	to	convert	a	character	or	sequence	of	characters	to	uppercase,	use	the	verb	gU	
(That’s	a	Shift-U	for	the	second	character)	followed	by	any	standard	navigation	motion.	
(Nobody	said	a	verb	had	to	be	a	single	letter,	though	most	are).	I	Kind	this	particular	verb	
frustrating	because	g	is	normally	assigned	to	the	Go To	motions.	In	this	case,	(as	with	gJ	
above)	it	is	a	verb	instead.	

I	guess	you	can	think	of	it	as	“Go	To	and	Convert	to	Uppercase”	where	U	is	short	for	
Uppercase.	

The	inverse	function	to	convert	all	text	between	the	current	cursor	position	and	the	motion	
destination	is	to	use	a	lowercase	gu	before	the	motion.	Kind	of	weird	to	remember,	but	it	
does	match	the	common	vim	idiom	of	“u”	means	an	action	and	“U”	means	the	same	action	
BUT	BIGGER.	

The	duplicate	commands	gUgU	and	gugu	do	the	same	thing	as	other	duplicate	verbs,	
applying	the	upper/lower	case	operation	to	the	entire	line.	It’s	a	rather	annoying	sequence	
of	keypresses,	though,	little	easier	than	combining	gU	with	the	^	and	$	motions	(i.e.	^gU$).	

I	don’t	Kind	these	commands	very	useful.	I	more	frequently	use	the	~	command,	which	
inverts	the	case	of	the	character	under	the	cursor.	

Tip:	If	you	Kind	yourself	doing	a	lot	of	case	switching	work,	have	a	look	at	the	
coerce.nvim.	It	doesn’t	have	a	LazyVim	extra	so	you’ll	need	to	conKigure	it	yourself,	
but	it	can	be	worth	the	effort.	

Repea/ng Commands

LazyVim	doesn’t	have	multiple	cursor	mode.	There	are	plugins	to	support	multiple	cursors,	
but	in	my	experience	they	don’t	work	very	well.	Neovim	does	have	multiple	cursors	on	their	
roadmap,	so	I	am	hoping	they	will	come	up	with	a	paradigm	that	integrates	nicely	with	the	
vim	mental	model.	

In	the	meantime,	Neovim	provides	several	different	tools	available	for	performing	an	action	
in	multiple	places	in	your	code.	We’ll	cover	basic	repetitions	here,	and	other	useful	
techniques	in	later	chapters.	

Once	you	have	performed	any	verb,	you	can	navigate	to	another	place	in	the	document	and	
repeat	that	verb	with	a	single	keypress:	.	(That’s	a	period,	although	you	will	usually	hear	it	
referred	to	as	“dot	repeat”	in	this	context).	

This	highlights	why	d	and	c	need	to	be	separate	verbs,	as	opposed	to	using	something	like	
d<motion>i.	When	you	use	c,	the	delete	motion	and	the	text	you	inserted	is	remembered,	
so	you	can	repeat	the	entire	change	with	a	.	command.	For	example,	if	you	want	to	replace	
all	instances	of	a	variable	named	i	with	a	much	better	name	of	index,	you	could	jump	to	
the	Kirst	instance	of	i	and	type	clindex<Escape>	to	“change	one	character	to	index”.	Then	
you	can	use	Seek	mode	or	other	navigation	commands	to	go	to	the	next	use	of	i.	Now	just	
type	.	to	repeat	the	change	and	continue	to	the	next	instance.	

Like	motions	and	verbs,	the	.	command	can	be	given	a	count.	However,	counts	with	.	are	a	
little	bit	nuanced.	Rather	than	blindly	repeating	the	command	<count>	number	of	times,	it	
will	instead	replace	the	count	of	the	command	being	repeated.	

This	means	that	if	you	use	the	verb	3dd	to	delete	three	lines,	and	the	next	operation	you	
perform	is	2.	(“2	dot”),	the	second	operation	will	delete	two	lines,	rather	than	six.	

https://github.com/gregorias/coerce.nvim

Recording Commands

Vim’s	command	recording	and	playback	system	is	extremely	powerful.	You	can	trivially	
record	an	arbitrary	sequence	of	navigation,	editing,	and	insertion	commands,	then	repeat	
that	sequence	on	demand	at	any	location	you	want.	

To	start	a	recording,	press	qq.	Sorry,	but	I	have	no	mnemonic	to	remember	q.	I	have	a	
feeling	it	was	just	the	last	available	key	on	the	keyboard!	

After	that,	type	whatever	sequence	of	navigation,	editing,	and	insertion	commands	you	
want	to	record.	Delete	words,	insert	text,	change	text,	search	for	words	(don’t	use	Seek	
mode,	as	the	replay	mechanism	will	have	no	idea	what	label	to	jump	to).	Virtually	anything	
you	can	do	in	vim	(even	:	commands)	can	be	recorded	and	replayed	later.	

When	you	are	Kinished	recording,	just	press	q	again.	The	recording	will	be	stored	ready	for	
replay	whenever	you	desire.	

Appending to a recording

If	you	partially	complete	your	recording	and	then	realize	you	need	some	more	information	
or	need	to	make	an	edit	before	completing	the	recording,	you	can	stop	the	recording	using	q	
as	usual	and	do	the	thing	you	need	to	do.	

When	you	are	ready	to	continue	recording,	use	qQ	to	record	in	append	mode	instead.	The	
main	tip	here	is	that	you	need	to	make	sure	your	cursor	is	in	a	location	such	that	the	
merged	recording	will	make	sense.	This	usually	means	the	same	place	it	was	when	you	
stopped	recording,	although	it	may	depend	on	what	changes	you	made	in	the	meantime.	

Playing Back a Recording

The	easiest	and	fastest	way	to	play	back	your	most	recently	saved	recording	is	with	Shift-
Q.	

It	is	possible	to	store	and	replace	multiple	recordings	at	once	using	registers	(a	stupid	name	
for	a	storage	location	that	harkens	back	to	humanity’s	dark	days	of	assembly	
programming).	I	will	go	into	more	detail	about	registers	in	a	later	chapter.	

Undo and Redo

Obviously,	these	are	the	most	important	operations	in	the	whole	book!	Use	the	u	key	to	
undo	your	most	recent	change.	Note	that	“most	recent	change”	can	be	a	pretty	big	whack	of	
text,	especially	if	you	haven’t	exited	Insert	mode	for	a	while.	For	example,	I	wrote	this	entire	
paragraph	in	one	Insert	session.	If	I	press	u	the	entire	paragraph	will	be	lost.	

That’s	ok,	though,	because	I	can	redo	using	Control-r.	Like	most	developers,	I	use	both	of	
these	extensively.	(Did	you	know	that	in	the	old	days	of	typewriters,	secretaries	had	to	get	
100%	accuracy	scores	on	their	typing	tests?	There	was	no	backspace	or	delete	key,	you	
see).	

Neovim	actually	does	an	amazing	job	of	keeping	track	of	your	entire	history,	rather	than	
just	the	most	recent	suite	of	changes.	So	if	you	make	a	bunch	of	changes	to	get	to	state	B,	
then	undo	to	state	A,	and	then	make	a	bunch	more	changes	to	get	to	state	C,	it	is	still	
possible	to	get	back	to	state	B	(ie:	back	out	of	the	C	changes	to	state	A	and	go	back	up	the	B	
changes	to	state	B).	

It’s	kind	of	the	same	concept	as	git	branches,	except	your	history	is	automatically	tracked	
for	every	keystroke	you	make.	Working	with	branches	of	undo	history	using	raw	Neovim	
commands	can	feel	pretty	clumsy,	though	(read	through	:help undo-branches	if	you’re	
brave).	Instead	I	recommend	conKiguring	and	installing	the	undotree	plugin.	

About	99.9%	of	the	time,	u	and	Control-r	will	be	all	you	need,	but	that	remaining	0.1%	
can	be	a	godsend	when	you	need	it.	

Summary

In	this	chapter,	we	expanded	our	understanding	of	the	Vim	mental	model,	and	then	
introduced	several	verbs	that	can	be	combined	with	the	navigation	motions	we	were	
already	familiar	with.	

We	discussed	a	grab-bag	of	other	editing	commands	before	covering	how	to	repeat	motions	
using	.	and	command	recordings.	Finally,	we	covered	undo	and	redo.	

In	the	next	chapter,	we’ll	learn	about	text	objects	and	some	additional	nuances	of	the	vim	
mental	model	with	operator-pending	mode.	Combined,	these	allow	us	to	very	quickly	
perform	actions	on	a	huge	variety	of	code	concepts.

https://github.com/jiaoshijie/undotree

	Chapter 1: Installation
	Choosing a Terminal
	Setting Up Your Terminal Font
	Install Neovim
	Which Version should I install?
	Windows
	MacOS
	Linux

	Try Neovim Raw (If You Dare)
	Install LazyVim
	Start with a clean slate
	Clean up: Windows with Subsystem for Linux, MacOS, and Linux
	Clean Up: Windows without WSL
	Install other recommended dependencies
	Clone the starter template
	git clone: Windows with Subsystem for Linux, MacOS, and Linux
	git clone: Windows without WSL

	The Dashboard
	Lazy.nvim Plugin Manager
	A Note on Managing Dot Files
	Summary

	Chapter 2: What is Modal Editing, Anyway?
	Introduction to Modal Editing
	A note on Keybinding Mnemonics

	Visual Mode
	Command Mode
	Summary

	Chapter 3: Getting Around
	Seeking Text
	Scrolling the screen
	Z Mode

	The first rule of Vim
	Counting
	Find mode
	Moving by Words
	Moving by Words, Only BIGGER
	Line targets
	Jumping to specific lines
	Jump History
	Summary

	Chapter 4: Opening Files
	Introducing Telescope
	The difference between “Root” and “cwd”
	Current Working Directory
	Root directory

	The Neo-tree.nvim plugin
	The mini.files alternative
	Using mini.files
	Saving Filesystem Changes

	Summary

	Chapter 5: Configuration and Plugin Basics
	The Three Categories of Plugins in LazyVim
	Lazy Extras
	Disabling a Built-in Plugin
	Modifying Keybindings (example)
	Structure of a keys entry
	Customizing the mini.files Options

	Modifying Existing Options
	Installing third-party plugins
	Summary

	Basic Editing
	The Vim Command Mental Model
	A Note on Insert Mode

	Deleting Text
	Changing Text
	Operating to end of the current line
	Operating on entire lines
	Some shortcuts for modifying individual characters
	Manipulating Case
	Repeating Commands
	Recording Commands
	Appending to a recording
	Playing Back a Recording

	Undo and Redo
	Summary

