
Chapter 1: Installation

So you think you’re ready to install Neovim? Actually, you still have one decision to make.	

Neovim can run in a lot of different contexts (You can even run it inside VS Code)! By
default it is a terminal program, but there are also tons of GUIs available. I have tried almost
all of them, and, honestly, I don’t think they have any inherent advantage over running
Neovim directly in the terminal.	

We will discuss hooking up NeoVim to the Neovide GUI much later in the book, but for
starting out, I recommend running NeoVim in a terminal. A very good terminal, to be
specific.	

Choosing a Terminal

To get the best Vim editing experience, you want a GPU accelerated terminal. What’s that
mean? Basically that you will be using the chip designed to render photo-realistic video for
rendering source code. Makes as much sense is using it for AI, right?	

You will need to do your own research on the following options, so ask your favourite
search engine or the AI Chat bot de jour to help you decide:	

• Kitty Terminal is my personal preference. I find it well-documented, easy to
configure and has all the features I need.	

• Alacritty is probably the winner for raw speed, but configuration is awkward, and it
is less featureful.	

• Wezterm has some very nifty features, but I found the documentation to be lacking
and had trouble getting some aspects to work.	

• Windows Terminal, if you are a Windows user, does claim to be GPU accelerated,
though I found that Neovim was sometimes unresponsive in it.	

• If you’re already on the Warp Terminal train and you just can’t live without it,
Neovim will work inside it. I found the experience a little choppy, and I didn’t enjoy
the look and feel of Warp (or the fact that I needed to sign in to use it)	

So install one or more of those until you find one that you like. You can use other terminal
emulators if you want to. You probably won’t even notice that the experience is inferior, but
I can promise that if you later switch to a GPU-accelerated experience, you’ll notice the
improvement.	

https://sw.kovidgoyal.net/kitty/
https://alacritty.org
https://wezfurlong.org/wezterm/index.html
https://github.com/microsoft/terminal?tab=readme-ov-file
https://www.warp.dev

Setting Up Your Terminal Font

LazyVim and its plugins look beautiful in a terminal, and you would almost not believe that
they are not a GUI application. To do this, they depend on special fonts that have a TON of
glyphs for coding related things. Most notably, this gives you access to icons representing
the type of file you have open, but also provide nice frames and window-like behaviour in
the terminal.	

To get the best LazyVim experience, you will need to install one of these special fonts and
configure your terminal to use it. Indeed, you should really be using one of these fonts in
your terminal even if you aren’t a heavy Neovim user. A lot of modern terminal apps
(there’s a phrase, eh?) look better if you have them installed.	

Visit Nerd Fonts for more information and to choose a font. I personally use the VictorMono
Nerd Font because it has a unique typeface for the italic font that I like for code comment
blocks.	

You can choose from many of the most popular programming fonts. Downloading and
installing them is very much operating system dependent, so I’ll leave the Nerd Fonts
website to explain it to you.	

Install Neovim

Installing Neovim is generally one of the least problematic installs you will encounter as
Neovim works pretty much anywhere software can be installed, and it only relies on
standard system dependencies. The chief problem is that no matter which operating system
you use, you are spoiled for choice!	

You can visit the Neovim home page and click the “Install Now” button to get the latest
instructions for your operating system of choice (or of necessity) from the Neovim
developers.	

Which Version should I install?

Neovim development happens at a super fast pace compared to their release cycle, so it is
not uncommon for folks to run the latest nightly build. I have only rarely encountered bugs
in builds cut from the master branch on Github, so it’s generally safe. I usually run off the
latest stable release when it comes out, and then when some new plugin update says
“here’s a cool feature if you use Neovim nightly,” I’ll install the latest build instead.	

I suggest starting with the stable version of Neovim for now, which at time of writing is
0.9.5. The 0.10 release does have some cool features that LazyVim leverages, so if you start

https://nerdfonts.com
https://neovim.io/

to get as excited about this distro as I am, it will be a perfectly natural progression to switch
to the pre-release.	

Windows

I generally recommend using the Windows Subsystem for Linux (WSL) and doing all
development in there. WSL is way outside the scope of this book, but it is well-documented
by Microsoft and many online tutorials. Once you have chosen a WSL-compatible Linux
distribution, set it up, and have it running in your chosen terminal, you can install Neovim
using the Linux instructions below.	

If you have a reason to—or preference for—developing on native Windows, the easiest
thing to do is grab the MSI installer from the Releases section of the neovim/neovim
repository on GitHub.	

If you already use Winget, Chocolatey, or Scoop to manage packages on your Windows
machine, there is a Neovim package in each of them.	

Note that if you use Windows without WSL, you will need to install a C compiler in order to
get treesitter support. This is not a trivial task. It is documented in the nvim-treesitter/
nvim-treesitter GitHub repo, so I won’t go into detail here.	

MacOS

I recommend first installing Homebrew if you don’t have it already by following the
instructions at brew.sh.	

Once you have brew up and running, the command brew install neovim will instal
Neovim.	

If you want to live on the edge, brew install --HEAD neovim will install the latest
nightly version of Neovim, which is probably, but not guaranteed to be, stable.	

I find the brew experience to be much kinder than other MacOS installation options for
Neovim, so if you aren’t already a Homebrew user, I strongly suggest exploring setting it up.
There are other open source tools that you will want to install as we get deeper into the
LazyVim journey, and brew will be the easiest way to get them all.	

If you don’t want to use Homebrew, things are a bit more annoying. The Neovim dev team
doesn’t maintain a MacOS installer, so you’ll have to download a tarball and extract it, then
link to the binary from somewhere on your system path. If you don’t know what any of that
means, honestly, use Homebrew, it’s easier!	

https://github.com/neovim/neovim/releases/
https://github.com/nvim-treesitter/nvim-treesitter
https://github.com/nvim-treesitter/nvim-treesitter
https://brew.sh/

Linux

If Neovim isn’t available using your distribution’s default package manager, you have a very
strange Linux distribution, indeed!	

So just run sudo pacman -S neovim, sudo apt install neovim, sudo dnf install
neovim, or the appropriate command for whichever more esoteric package manager you
prefer.	

If you want a nightly version, you may find the instructions on the neovim/neovim GitHub
Releases page, or will have to dig into your distro’s documentation.	

You will also need to install a C compiler in the unlikely event that your Linux distribution
didn’t come with one. For most distros, just install the gcc package and you should be good
to go.	

Try Neovim Raw (If You Dare)

Once you have Neovim installed, you can try it out by simply typing nvim (or nvim
<filename> to open a specific file) into the terminal you installed a few sections ago. If it is
installed correctly and on your path, you’ll get an unappealing looking editor that looks like
it was forked from something written in the 90s that had the express intent of looking like it
was written in the 70s.	

So, at least it’s honest?	

Unfortunately, you’re now trapped. To save you the frantic “how do I exit vim” google
search, the command to quit is Escape followed by the three characters :q! followed by
Enter: <Escape> <Colon> q <Exclamation> <Enter>.	

Seriously, “How do I exit vim” is one of the top three autocompletes on Google for “How do I
exit…”. Apparently only a Samsung TV plus and full screen mode on MacOS are harder to get
out of!	

TIP: If you want to, you can run the command <Escape>:Tutor<Enter> to open
an interactive text file that you can read through and edit while learning the basics
of Neovim. I do recommend doing this at some point, but now may not be the
right time, as a lot of things that are “normal” in the vim tutor are different
(better!) using LazyVim. The rest of this book does not assume you have gone
through the tutor, but it also won’t necessarily cover everything that is available
there.	

Install LazyVim

Now that you have Neovim up and running, let’s get it configured to look like it was
developed this century.	

Installing LazyVim requires a bit of work with git. Since you are reading this book, I am
assuming you are a) a software developer and therefore b) familiar with git. You can
probably use whichever visual git tool you are familiar with. But… now that you have that
fancy GPU accelerated terminal emulator, I say put it to good use.	

The git commands to install LazyVim are more or less the same for the various operating
systems, though paths and environment variables are different.	

Start with a clean slate

First, remove or back up all existing Neovim state. This step is largely optional if you’ve
never used Neovim before, but I recommend making sure the following directories have
been removed or moved:	

Clean up: Windows with Subsystem for Linux, MacOS, and Linux
rm -rf ~/.config/nvim	
rm -rf ~/.local/share/nvim	
rm -rf ~/.cache/nvim	

If you aren’t brand new to Neovim and have a config you want to keep in case you don’t like
this LazyVim experiment, move it someplace safe instead of removing it.	

Clean Up: Windows without WSL

The location of the config and data folders is a little bit different, but the idea is the same as
for the Unix systems. Just use Powershell commands instead of the Unix core-tools:	

Move-Item $env:LOCALAPPDATA\nvim $env:LOCALAPPDATA\nvim.bak	
Move-Item $env:LOCALAPPDATA\nvim-data $env:LOCALAPPDATA\nvim-data.bak	

Install other recommended dependencies

I strongly recommend installing lazygit, ripgrep and fd, which are used by LazyVim to
provide enhanced git, string searching, and file searching behaviours. Most package
managers will have these available for trivial installation. You can find more specific
installation instructions on their respective GitHub repositories under jesseduffield/lazygit,
BurntSushi/ripgrep and sharkdp/fd respectively.	

https://github.com/jesseduffield/lazygit
https://github.com/BurntSushi/ripgrep
https://github.com/sharkdp/fd

Clone the starter template

You’ll use a git clone command to download the starter template and copy it into the
user config directory for Neovim, then remove the .git folder.	

The starter is just that: a starter. So you won’t ever need to pull changes from this repo.
Instead, LazyVim will manage updating itself and all its plugins for you. The only reason the
starter is a git repo is that it’s easy for the LazyVim maintainers to maintain. From your
point of view you’re just downloading the current state of the repo and don’t need to know
about the past or future state.	

git clone: Windows with Subsystem for Linux, MacOS, and Linux

On Unix systems, use these commands:	

git clone https://github.com/LazyVim/starter ~/.config/nvim	
rm -rf +/.config/nvim/.git	

git clone: Windows without WSL

On native Windows, use these commands:	

git clone https://github.com/LazyVim/starter $env:LOCALAPPDATA\nvim	
Remove-Item $env:LOCALAPPDATA\nvim\.git -Recurse -Force	

The Dashboard

Ok, you have completed the most difficult section of this book and you’re finally ready to
start LazyVim! Use the same terminal command as before: nvim.	

You’ll see a flurry of activity as LazyVim sets everything up and downloads the plugins it
thinks are essential. You may see it compile and install a bunch of treesitter grammars; if
you see a message to “Show More” use Shift+G to skip to the end. Once everything is
installed, you’ll see a summary of the plugins that were installed inside a window managed
by a plugin called lazy.nvim	

The lazy.nvim plugin should not be confused with LazyVim itself, though both are
maintained by the same person. lazy.nvim is strictly a plugin manager, whereas LazyVim
is a collection of plugins and configurations that ship together. One of those plugins is
lazy.nvim.	

We’ll be covering most of the plugins that ship with LazyVim later in this book, so for now,
once you get to the lazy.nvim screen, you can press the q. The plugin will interpret this as
quit lazy.nvim and the window will close.	

Now you can see the LazyVim dashboard, which is the first thing you’ll see every time you
start LazyVim. It’s a little more friendly than the out of the box Neovim experience:	

	

screenshot	

As you can see, there are several commands that allow you to interact with the dashboard
via a single keystroke. Most importantly, of course, is the q keystroke to quit!	

Most of these options are self-explanatory, but we’ll discuss a few of them more deeply in
later chapters.	

Lazy.nvim Plugin Manager

When you first open LazyVim, it checks for any plugins that are available to be updated, and
gives you an overview in a message notification that will look something like this:	

	

screenshot	

Because Neovim is pretty barebones by default, LazyVim ships with a ton of useful plugins
ready to go. And there’s a good chance they are out of date because plugin development in
the Neovim world happens at a ridiculously fast pace.	

In the old old days, plugin management was completely manual process. In the less old, but
still old days, it was managed by a variety of plugins that did the job but felt like they were
lacking something.	

Then came the plugin manager called lazy.nvim, created by the same person that later
created LazyVim.	

Lazy.nvim has a ton of slick features, most notably loading plugins only when needed
(hence the name “Lazy”) so that your editor is lightning fast to start up. It also has a nice UI
for managing plugins installation and updates.	

You can access this UI from the dashboard simply by pressing the l key, which is labelled in
the dashboard as Lazy. The label should probably be Lazy PLugin Manager to make it a
bit more clear, but now you know what Lazy means so you won’t forget.	

If you are not actively displaying the dashboard, you can show the plugin manger at any
time by entering space mode. We’ll cover space mode in detail in the next chapter, but for
now: First make sure you are in Normal mode by checking the lower left corner of the
active window. If not, press Esc to enter Normal mode. Then press Space to enter space
mode, followed by l to bring up the lazy.nvim plugin manager.	

The Lazy plugin manager interface looks like this:	

	

screenshot	

The window that has popped up is called a floating window. You’ll see these in a few
different situations, usually when there is interactive data that you need to work with (like
a web modal). This particular floating window comes with it’s own set of keybindings. The
keybindings are listed across the top, and pay attention to the fact that all of them are
capitalized, so you need to use the Shift key when invoking them.	

Realistically, the only keybinding I use on a regular basis is Shift-S, for Sync. This is the
equivalent of running install, clean, and update in one single action, so it has the effect of
guaranteeing that the versions of plugins that are actually installed is exactly consistent
with the ones specified in the LazyVim configuration.	

So when the “Plugin updates available” notification pops up, just press Space-l and thenS
and wait for the sync to complete. Then press q to close the Lazy.nvim plugin mode and
floating window and return to what you were doing.	

A Note on Managing Dot Files

If you work on multiple different computers, you’ll quickly find that you don’t want to set
up your LazyVim configuration separately on all of them. LazyVim does not have the
equivalent of VSCode’s “settings sync”, though such plugins exist.	

An alternative I recommend instead is to store your config files in a git repository. You’ll
probably find there a few other files you want to keep in there such as your .gitconfig
and .zshrc / .bashrc / .config/fish/config.fish. If you use GitHub Codespaces, you
may already manage some dot files with git.	

If not, my personal recommendation is to follow the advice in the excellent blog article
Dotfiles: Best way to store in a bare git repository from the Atlassian blog.	

Before distributions like LazyVim came along, it was very common for people to store their
vim configuration in a public repository, and borrow ideas from each other. This practice is
not quite dead, and you can find my own dot files on GitHub in the dusty-phillips/dotfiles
repository.	

Summary

In this chapter, we briefly discussed the history of Vim, Neovim, and LazyVim, and why they
are still relevant today. Then we covered the importance of GPU accelerated terminals and
Nerd Fonts.	

We figured out how to install Neovim and its dependencies under whichever operating
system(s) you use, and finally, installed LazyVim from its starter template.	

In the next chapter, we’ll discuss Vim’s core feature: Modal Editing, and dig into the many
things you can do with your keyboard in LazyVim.	

Chapter 2: What is Modal Editing, Anyway?

As you may have guessed from the letters on the dashboard, LazyVim is very keyboard-
centric. As many actions as possible can be performed without moving your hands between
mouse and keyboard. That’s not to say that it’s impossible to use the mouse. You can click
anywhere in the editor, interact with buttons and modals when they pop up, use the scroll
wheel or gestures to scroll, and resize editor panes by dragging their borders, for example.
But you can also do all of these things using the keyboard, and usually more efficiently.	

https://www.atlassian.com/git/tutorials/dotfiles
https://github.com/dusty-phillips/dotfiles

More importantly, you can do most things by holding at most two keys, and usually just one.
You will only rarely have to contort your hands into painful (and dangerous) positions to
Control + Shift + Alt + <some key>.	

How does Vim do this? Modal editing.	

Introduction to Modal Editing

“Modes” in LazyVim simply mean that different keystrokes mean different things depending
on which mode is currently active. For example, when you start the editor up, you are in a
“Dashboard Mode”, and the most common interpretation of keystrokes in that mode are
listed right there on the dashboard. This discoverability of keybindings in a given mode is a
common theme in LazyVim, and a huge improvement over the opaque default behaviour of
Neovim itself.	

To see what I mean, press the spacebar to enter “space mode”. Space mode is a LazyVim
concept; it does not exist in a raw Neovim installation (though you can install various
plugins to recreate the effect if you want Neovim without LazyVim).	

Entering space mode pops up a menu along the bottom of your screen. If you have the
dashboard open, it will look something like this (my menu contains some customizations,
so yours won’t be identical):	

	

screenshot	

That’s a big menu. The important thing to focus on right now is the f key, which we will use
to understand modal editing.	

If you are in dashboard mode and press the f key, you will open the Find file dialog
using a plugin we’ll discuss later called Telescope. However, now that you are in space
mode, if you press the f key, it will open the file/find space mode submenu.	

This is the crux of what modal editing means: The behaviour of a given key depends on the
current mode. As indicated by the line at the bottom of the space mode menu, you can press
the Escape key to exit space mode and return to the dashboard. Go ahead and do that.	

Now you’re back in dashboard mode, and you can press the n key to create a new, empty
buffer.	

Pay close attention to the lower left corner of that buffer, where you’ll see the word INSERT
in green:	

	

screenshot	

Remember how I said Space mode is a LazyVim concept? Insert mode is a Vi concept, that
the successors Vim, then Neovim, and now LazyVim have all inherited. In Insert mode, the
vast majority of keystrokes do what you would expert in any editor: they insert text. So you
can touch type as with any other editor!	

You can access some keyboard shortcuts in insert mode using Control and Alt keys. For
example, you can hit Control-r to enter the “Registers” mini-mode, which pops up a list of
“registers” you can paste from. We’ll cover registers in detail later. For now, it is enough to
know that Control-r followed by the plus key (i.e. Shift-=) will paste text from the
clipboard in insert mode.	

However, you will much more often change to Normal mode to perform any non-text-entry
operations, including pasting text.	

To get into Normal mode from Insert mode, hit the Escape key. The cursor will change from
a bar to a block and the indicator in the lower left corner will change to a blue NORMAL:	

	

screenshot	

In Normal mode, pressing various keyboard characters will not insert text like it does in
Insert mode. For example, pressing p, rather than inserting a literal p character into the
document, will instead paste from the system clipboard.	

Vim and Neovim aren’t very discoverable, but they ARE extremely memorable. As often as
possible, the keyboard shortcuts to perform an action start with a letter that makes sense
for the action being performed. You might think p stands for “Paste”, but in fact the concept
has been around for longer than the clipboard mnemonic. You are welcome to think of it as
“paste” if that’s easier for you, but in vim parlance, it actually stands for “put”, and we’ll use
that word in different contexts throughout the book.	

For some contrast, the Control-r key that pops up the list of registers in Insert mode does
not pop up a list of registers in Normal mode. Instead, Control-r means “Redo” (aka undo
an undo). In order to enter the Registers mini-mode from Normal mode, you would pres the
" (Shift-apostrophe) key instead.	

If that sounds confusing, don’t worry. Your brain and muscle memory will adapt more
quickly than you expect and you’ll always understand that behaviours in normal mode are
not the same as in insert mode.	

To be honest, I hardly ever use non-text-entry commands in Insert mode. I find it is easier
to switch back to Normal mode and then perform the command from normal mode. It
doesn’t usually take a higher number of keystrokes to do so and I don’t have to hold down
multiple keys at once.	

As I mentioned, the universal key to exit Insert mode and return to Normal mode is Escape.
And that brings us to an important point: You will be using this key a lot, but moving your
hands from the home row to the Escape key in the upper left corner and back again is
somewhat inefficient.	

There are a few common workarounds to this situation:	

• If you have a customizable keyboard you can put the escape key in a more accessible
location. This is what I do. I have a Kinesis Advantage 360, and I remapped the keys
so that escape is in the “thumb key” section of this admittedly bizarre keyboard. It’s
as easy to hit as enter, space, and backspace, other keys that I use very frequently.	

• Your operating system is probably also capable of remapping keys. A lot of users
replace the largely useless Capslock with the Escape key. If you ever go back to the
keyboard chaining editors descended from Emacs, including VSCode: For these
editors it can be more comfortable to remap Capslock to the commonly-held
Control key, especially on laptop keyboards).	

• Neovim itself is also able to remap keys. We’ll discuss how to do this in LazyVim
later. One common pattern is to map a series of uncommon keystrokes that you
wouldn’t likely type together when inserting text to the escape key. So you can set it
up to map something like jk, jj or ;; in Insert mode to switch to normal mode. I’ve
tried this and don’t care for it as it introduces a timing thing when you hit the first
character and Neovim is waiting to see if you’re going to type a command or let text
insertion continue, but you might like it.	

• The Control-C keyboard combination also works to exit normal mode, with no
remapping required. I don’t like this because it’s two keystrokes and on my Dvorak
keyboard, Control-C is harder to hit than on a qwerty keyboard where C is on the
bottom row near the Control key.	

Don’t worry about actually changing it for now; just start getting used to using Escape
where it is and see if you find it annoying. I’ll mention it again when we get to the
remapping section and you can decide then if you want to change it.	

Once you’re in Normal mode, you’ll obviously want to get back to Insert mode to enter text
at some point! There are several different ways to do this that we’ll discuss later. As a taste,
here are a couple of the most common ones:	

The i key always inserts text before the current cursor position. This means that you could
(very clumsily) move your cursor left by pressing i <Escape> i <Escape> repeatedly.
When you press i, you insert text before the current position, and then escape takes you
out of Insert mode at that new “before” position.	

Commonly, you want to enter insert mode after the current cursor position. To do that, use
the a key instead (mnemonic: i = Insert Before, a = Insert After).	

You’ll find that you need to alternate between these a lot as you are navigating a document
because the various navigation commands we’ll cover later will often put you just before or
just after the position you need to insert at. So it’s important to remember both of them.	

Two other very common operations are to insert at the very beginning or the very end of
the current line. You could use navigation commands to move to the start or end and then
use i and a, but it’s easier to use the commands Shift-I and Shift-A instead (The
difference is that they are capitalized, so you need the Shift key with them).	

A note on Keybinding Mnemonics

It is very common for related keybindings like these to be assigned to the lowercase and
uppercase versions of the same key. You will often find that the lower case version means
“do something” and the uppercase version means either do the same thing only
BIGGER or do the opposite thing, depending on the situation. In this case, i and a

mean “insert one character before or after the cursor” and I and A are “insert before or
after the cursor, only BIGGER (i.e. at the beginning or end of the line)”.	

To illustrate the “do the opposite thing” situation, consider the o and Shift-O keys, which
are two new ways to get into insert mode.	

The o key is used to enter insert mode on a new line below the current one. I’ve heard the
mnemonic as “Open a new line above/below” to help you remember the otherwise not
terribly memorable o command. And in the classic “do the opposite thing” scenario, Shift-
O means “create a new line above the current one and enter insert mode on it”.	

Let’s discuss one final very useful command takes two keystrokes, one after the other: gi.
That is a single press and release of g followed by i.	

This effectively means “Go to the last place you entered insert mode, and enter insert mode
again”. In this case, the g key is actually switching to a new mini-mode I call “Go To” mode,
though not all the commands accessible from it are strictly related to going places. You can
see the entire list of commands available in “Go To” mode by pressing the g key in normal
mode and waiting for the menu to pop up at the bottom of the window:	

	

screenshot	

We’ll cover most of them later, but notice that the i key is in there labelled Move to the
last insertion and INSERT. So if you forget how to go to the last insertion point, you
can enter Go To mode and scan the menu to find the i again.	

Try all of those commands (a, i, o, A, I, O, and gi) repeatedly, entering some text and
pressing Escape to return to Normal mode. Then try it again. Move your cursor around the
text using the mouse (we’ll get to keyboard navigation soon, I promise), and try using the
commands again to see how they behave in new locations.	

Get really comfortable with switching between Normal and Insert mode. You might think
you’ll spend most of your time in Insert mode, but the truth is code is edited far more often
than it is written afresh, and you’ll be alternating between them constantly.	

Visual Mode

The other major mode that LazyVim inherits from its ancestors is “Visual” mode. Visual
mode is used to select text. In general, you can enter Visual mode and then use many of the
same navigation keys you would use in Normal mode to move your cursor around. Since we
haven’t covered those navigation keystrokes yet, I’m going to defer a detailed discussion of
Visual Mode until we have the necessary foundation.	

Command Mode

Command mode is different from some of the other modes we’ve seen, which were mostly
submenus or editor-level major modes. You can get into command mode from Normal
mode by using the : (i.e. Shift-<semicolon>) command. In LazyVim, this will pop up a
little widget where you can type what is known as an “Ex Command.” This name comes
from vi’s predecessor, ex, which hasn’t really been used (other than as part of vim) in
decades.	

Essentially, you can enter a wide variety of commands into this widget and expect certain
behaviours to happen as a result. It is actually more similar to the VS Code command pallet
than anything else, though it is a quite different beast.	

You already know one ex command from the previous chapter! Remember
<Escape><Colon>q!<Enter> the command to exit the editor? You now know that the
Escape is to enter Normal mode from whatever mode you are in. The colon is used to
switch to Command mode, and the q is short for quit (You could type the full word quit if
you didn’t feel the need to conserve keystrokes). The exclamation point says “without
saving” and the Enter means “submit the ex command”.	

As another example, let’s consider the write ex command. Type : followed by write
myfile.txt like this:	

	

screenshot	

Press Enter to confirm and execute the command.	

Note: Most commands can be shortened to their shortest unique common prefix.
You can type :w myfile.txt instead of :write myfile.txt. The most popular
commands even have special combined commands, so :wq will save and exit,
although you’ll probably prefer :x as it’s even shorter.	

Command mode is kind of weird because it’s kind of like an insert mode in the sense that
you can type text into it, and some of the keybindings that work in insert mode work also in
command mode (including Control-r to paste from a register). But other keybindings
work differently in command mode. The most important one is the Tab key, which will do a
sort of “tab completion” on the command. For example, :q<Tab> pops up a menu like this:	

	

screenshot	

This damn completion menu is surprisingly unintuitive to navigate. You’re probably going
to want to bookmark this section or take some notes or something until you get used to it!	

First, if you want to select a different entry in the menu, you would surely think you can use
the arrow keys. Which you can, but it’s a mind-mess because you need to use Left and
Right to move the cursor Up and Down. I know! WTF, right?	

This is mostly because the menu looks different in LazyVim than it did in normal Neovim,
but the keys haven’t been remapped. So instead, I suggest using Tab and Shift-Tab to
select different entries from the menu. It’s easier to remember and much easier on the
muscle memory: Tab once to show the menu, tab again to cycle through the menu.	

Second, there is some nuance around confirming one of those menu entries. In the above
example, you can just press Enter to confirm the selection and execute it. However, there
are often cases where you want to confirm the selection and then continue editing the
command. An excellent example is the :e or :edit command.	

This command is used to open a file on your filesystem, but you have to type the entire path
to the file. For example, if you have the following directory structure:	

.	
└── foo	
 ├── bar	
 └── baz	
 │ └── fizz.txt	

…and you have Neovim open, you would have to type the following to open the baz.txt
file:	

:e foo/baz/fizz.txt	

That’s a lot of typing if you need to get to deeply nested directories. Luckily, you can use tab
completion for this. You can type :e f<tab>b<tab><tab><tab> to get foo/baz, but at
this point the menu is still open:	

	

screenshot	

If you press Enter now, it’s going to open the baz folder instead of just confirming the
selection, which is not what you want. And if you pres Tab again it will cycle through the
menu some more. What you want to do at this point is press the Control-y (y for “yes”)
key combination. This will confirm the baz selection and close the menu. Now you can
press tab again to complete the fizz.txt portion of the command.	

It is possible to remap these keys to be more like other software, and I honestly think this is
one thing LazyVim should do by default. I personally, have not remapped them as I have
plenty of vim muscle memory using these keystrokes, but I will show you how to do it later
when we cover keymapping.	

You probably won’t spend a lot of time in command mode. There are easier ways to open
files in LazyVim, for example, as well as to quit the editor. And if you need to do something

more complex with commnad history, there is a special window you can use to edit
commands with Insert and Normal mode that we will cover later.	

For now, remember <Tab> and Control-y and you’ll be able to navigate the Command
menu when you need to. There are other keybindings you can use to edit commands, but
unless you find yourself annoyed by certain repeated tasks, I wouldn’t worry about them.	

The most important command, by the way, is :help. Vim was created before folks had
ready access to the Internet, so it has a tradition of shipping all of its documentation with
the editor. Plugins tend to follow this tradition. So for example, if you can’t remember the
keyboard shortcut to put text, try :help put. Or, if you want to know what the Control-R
keyboard shortcut does, try :help Control-R. Of course, the Vim help documents have
been indexed by your favourite search engines and AI chat bots, so you can go all new-
school and ask them if you prefer.	

Summary

In this chapter, we became comfortable with the concept of modal editing and the most
important LazyVim modes. There are other mini-modes and one major mode that will come
up as we progress through this book, but becoming comfortable with Normal, Insert, and
Command mode (and how to switch between them) will take you a long way on your
LazyVim journey.	

In the next chapter, we’ll learn a whole bunch of different ways to move the cursor around
inside a document.	

Chapter 3: Getting Around

Software developers spend far more time editing code than we do writing it. We’re always
debugging, adding features, and refactoring.	

Indeed, the most common thing I ever do is add a print/println/console.log at some specific
line in the codebase.	

If you are coming from the more common word processing or text editing ecosystems,
navigating code is the thing that is most different in vim’s modal paradigm. Even if you’re
used to vim, some of the plugins LazyVim ships by default suggest different methods of
code navigation from the old vim standbys.	

In VSCode, often the quickest way to get from one point in the code to another is to use the
mouse. For minor movements, the arrow keys work well, and they can be combined with
Control, Alt, or Cmd/Win to move in larger increments such as by words, paragraphs, or

to the beginning or end of the line. There are numerous other keyboard shortcuts to make
getting around easier, and the Language Server support allows for easy semantic code
navigation such as “Go to Definition” and “Go to Symbol”.	

Vim also supports mouse navigation, but you’ll likely reach for it less often once you train
up on the navigation keymappings. Vim has keybindings for the same Language Server
Protocol features that VSCode has, and they are often more accessible. The big difference
with Vim is the entire keyboard’s worth of navigation commands that are opened up to you
when your editor is in Normal mode.	

Seeking Text

LazyVim ships with a plugin called flash.nvim, which is maintained by the creator of
LazyVim and integrates very nicely with it.	

This plugin provides a code navigation mode that has been available in various vim plugins
(starting with one called EasyMotion) for many years, and has historically been quite
controversial. A lot of long-time vim users think it breaks the vim paradigm. I won’t go into
the details as to why, but I will acknowledge that this was true in older iterations of the
paradigm and is much less true in modern versions such as flash.nvim.	

If you can see the code you want to navigate to (i.e. because the file is currently open and
the code is scrolled into view), flash.nvim is almost always the fastest way to move your
cursor there. It admittedly takes at least three keystrokes, but those three keystrokes
require no mental math or incrementally “moving closer” to the target until you get there,
which are two of the less efficient problems that come up with certain other vim navigation
techniques (as well as non-modal editing).	

To invoke flash, press the s key in Normal mode. My mnemonic for s is “s stands for seek”,
although I’ve also heard it referred to as “sneak” or “search” mode. Searching in LazyVim is
a different behaviour (it doesn’t care if the text is currently visible or not), and “sneaking”
sounds a little too dishonest, so I use “Seek”.	

The first thing to notice when you press s is that the text fades to a uniform colour and
there’s a little lightning symbol in the Mode indicator indicating that Flash mode is active:	

	

screenshot	

Since you know where you want the cursor to be, your eyes are probably looking right at it,
and you know exactly what character is at that location. So after entering seek mode, simply
type the character you want to jump to.	

For example, in the following screenshot, I want to fix the (intentional) typo in the heading
of this section, changing Test to Text.	

	

screenshot	

I have hit ss, and every single s in the screenshot has turned blue, including capitals. There
is an s character beside the flash icon in the status bar indicating that I have seeked an s.	

In addition, beside (to the right) of all the s characters nearest to the cursor (which is in the
bottom paragraph) have a green label beside them. If I wanted to jump to any of those s
characters, I would just have to type that label and boom, I’d be there.	

However, the character I want to hit is too far away to have a unique label, as there are a lot
of s characters in my text. No matter! I just have to type the character to the right of the
target s character, which is a t. Now my screen looks like this:	

	

screenshot	

Now, all instances of st in the file are highlighted in blue, and since there aren’t as many st
as s, all of those instances have a label beside them. The text I want to move to is labelled
with a y, so I press y and my cursor is moved to the s character I wanted to change. Now I
can type rx to replace the s with an x (we’ll discuss editing code in a later chapter, but now
you’ve had a taste of it).	

If you have multiple files open in splits (which we’ll also discuss in detail later), seek mode
can be used to move your cursor anywhere on the screen, not just in the currently active file.	

Seek mode does have drawbacks however, at least the way flash.nvim implements it.
There are some characters you can’t move to directly because you run out of text to search
for before a labelled match is in that location. For me this happens most often when I want
to edit the end of a line. If I type sn because I want to edit a line that has n as the last
character, but there are a bunch of n characters closer to my cursor than the one I want to
move to, flash may not label the n I want to move to, and it won’t accept a carriage return as
a “next character” input.	

For this reason, I don’t seek near ends of lines. Instead, I’ll seek to a word somewhere in the
middle of the same line and then use A which, as you may recall, will put me in insert mode
at the end of the line. Alternatively, if I don’t want to enter insert mode, I will use the $
symbol (Shift+4), which is the normal mode command for “Move cursor to end of current
line”.	

Scrolling the screen

Seek mode only works if the text you want to jump to is visible on the screen. You can’t label
something you can’t see! Often, this means you want to use search or one of the larger or
more specific motions discussed later, but there are also a few keybindings you can use to
scroll the screen so you can see your target and jump to it.	

These keybindings are a little unusual by Vim standards because they mostly involve using
the control key. How anti-modal! In my experience, these keybindings don’t actually get a
ton of use. Indeed I’ve forgotten some of them and had to look them up to write this
chapter.	

The scrolling keys I use the most are definitely Control-d and Control-u, where the
mnemonic is down and up. They scroll the window by half a screen’s worth of text. The
cursor stays in the same spot relative to the window, which means that it is moved up or
down by half a screen’s worth of text relative to the document.	

If you need to move even further, you can use the Control-f and Control-b keybindings,
which move by a full page of text. I don’t like these ones because I never quite know where
the cursor is going to end up and I become disoriented. But it can be handy if you need to
scroll something into view quickly to use Seek mode on it. Unlike Control-d and
Control-u, Control-f and Control-b can be prefixed with a count, so you can type
5<Control-f> if you need to scroll ahead by 5 pages.	

I have no idea why the keys Control-y and Control-e where chosen to scroll the window
by one line at a time. I never use them. These keybindings accept a count, so if you can
remember them, they are useful for subtle repositioning of the text. The main advantage of
these keybindings is that they don’t move the cursor unless it would scroll off the screen, so
if you are working on a line and need more visibility but don’t want to move the cursor, you
could use Control-y and Control-e to do it.	

The reason I don’t use these keys (other than lack of a decent mnemonic) is that I prefer to
do relative cursor positioning using z mode.	

Z Mode

The z menu is kind an of an eclectic mix of cursor positioning, code folding, and random
sub-menus, as you can see by pressing the z key while in normal mode:	

	

screenshot	

If that looks like a big menu, you don’t know the half of it! There are a ton of other z-mode
keybindings that are obscure enough to not deserve mention in the menu! I’ll cover the
three most useful scrolling related ones here and we’ll discuss others later.	

The relative cursor keybindings I use exclusively are zt, zb, and zz. These move the line
that the cursor is currently on to the top, bottom, or middle of the screen, respectively.
When moving to the top or bottom it will leave a few lines of context above or below the
cursor.	

There are others that will also move the cursor to the first column of the window, but
instead of memorizing those shortcuts, I recommend using zt0, zb0, and zz0 instead. As
we’ll discuss later, the 0 command just means “Go to the start of the line” (You can also use
home if your keyboard has a home key, but 0 is easier to hit on many keyboards).	

You can find other scrolling keybindings in the NeoVim documentation by typing :help
scrolling, but the ones I just mentioned will probably more than cover your needs as you
learn far more nuanced methods of navigating code.	

The first rule of Vim

So there is a holy rule in Vim that I constly break for valid reasons. Unless you are the very
strange combination of weird that I am, you probably should not break it:	

Never use the arrow keys to move the cursor.	

The background behind this rule is that it takes a tenth of a second or so to move your hand
to the arrow keys on most keyboards, and another tenth of a second to move it back to the
home row. I’m not convinced these tenths of a second add up to an appreciable amount of
time, even considering the millions of characters I have typed in my lifetime (Yes, millions. I
did the math once).	

But I do think the arrow keys on most keyboards can do nasty things to the long term
health of your hands, and honestly, the more you get used to the alternative vim
keybindings, the more you’ll prefer to use them.	

The vim keybindings for arrow keys seem rather unintuitive when you first look at them: h,
j, k, and l. These map to the directions, left, down, up, and right. If it seems weird that l
means “right” instead of left, or you’re wondering why they skipped i since that appears
to be an alphabetic sequence, look at your keyboard.	

If you are a English-speaking person with a standard Qwerty keyboard, the letters h, j, k,
and l are on the home row under your right hand, in that order, and are therefore the
easiest keys to hit on the entire keyboard.	

Open a largish file in Neovim (you can use :e path/to/filename) and experiment with
moving the cursor left, right, up and down using the home row keys. While you do that, I’ll
tell you why I don’t use them because I’m triply abnormal.	

First, I’m left handed, so the right hand home row is slightly less accessible feeling. Second,
I’ve been a Dvorak user for two decades. The j, k, and l keys are not on my home row.
Third, I use a Kinesis Advantage 360 keyboard, which, among other bizarre layout features,
places the arrow keys within reach of my fingers so I don’t have to move my hand to hit
them.	

By a strange twist of fate, these weirdnesses kind of cancel each other out. The j and k keys
happen to be directly above the left and right arrow keys under my dominant left hand. So
that’s what I use for navigation: Left Right, j k. If you are less weird than me, you should
probably use the right-hand home row keys the way vim was designed.	

Vim, Neovim, and LazyVim are all really good at reusing motions, so you will find that h, j,
k, and l are used for a lot of different navigation sequences as you progress through this
book. Take enough time to really get used to them. But recognize that if you ever have to
push these keys more than twice in succession to move the cursor, you’re wasting
keystrokes.	

Counting

The vast majority of commands in Vim can be prefixed with a count to repeat the motion
multiple times. The count is typically entered as a sequence of digits before the command
you want to repeat.	

So, for example, to move the cursor up 15 lines, you would enter normal mode and hit the
keys 15k. To move it five characters to the right, use 5l.	

This is why LazyVim has such weird line numbering by default. Consider the following
screenshot:	

	

screenshot	

My cursor in this screenshot is on line 126, which is highlighted in the left gutter. It’s also is
also visible in the lower right corner of my window, though I cropped it out in this
screenshot. But directly above line 126 we see the line number 1, and directly below it we
also see the line number 1.	

Let’s say I want to move my cursor to the Scolling the screen heading.	

This line has the number 5 beside it, so I don’t have to count lines or do any mental
arithmetic to figure out the count to use to move my cursor. I just type 5j and my cursor
moves to the desired line.	

Now that you know what they are for, I suggest leaving relative numbers on until you get
used to them. If you find them distracting or just don’t use them, you can change to normal
line numbers by editing your LazyVim configuration. Open the file ~/.config/nvim/lua/
config/options.lua, which should have been created for you by LazyVim but currently
won’t have anything in it other than a comment describing what it is for.	

Tip: You can use the space mode command <Space>fc to find files in the LazyVim
configuration directory. This will pop up the Telescope file picker that we’ll discuss in detail
in the next chapter. Type options and press <Enter> to open the file.	

To disable relative file numbers, add this line to the file and save it:	

vim.opt.relativenumber = false	

Then reopen Neovim, and you should see the absolute value of line numbers in the left
column.	

Personally, I find line numbers to not be very useful and I don’t like wasting valuable screen
width on displaying those characters. As has become a running theme, I recognize that I am
somewhat odd! But if you also want to disable line-numbers altogether, you’ll need another
line in options.lua:	

vim.opt.number = false	
vim.opt.relativenumber = false	

Find mode

If you need to move your cursor to a position that is relatively close to its current position,
you may want to use LazyVim’s Find mode instead of the Seek mode we described earlier.
The default Find mode in Neovim is rather limited, but the flash.nvim plugin that enables
Seek mode makes it much nicer to use.	

To enter find mode, press the f key. Like Seek mode, a portion of your screen will dim,
indicating that you should type another character, and after you do so, all instances of that
character after the cursor will be highlighted.	

This is where the similarities between Find mode and Seek mode end, however. My cursor
(which was originally in the middle of the word ‘described’ in this screenshot) immediately
jumped forward to the first s (case insensitive) in the document. You’ll also notice that none
of the text before the place where my cursor has been dimmed, and that none of the s
characters in the lines before my cursor have been highlighted.	

Also unlike Seek mode, there are no labels to jump directly to any of the s keys that have
been highlighted, and I cannot type additional search characters to narrow down the
search.	

Instead, I need to use counts to jump to later instances of s. If I want to jump ahead to the
third highlighted s, I type 3f and my cursor will move there. However, if you want to jump
to a much later s, you probably don’t want to individually count how many s keys there are.
Luckily, after you use a count, LazyVim leaves you in find mode, so you can just guess how
many s characters there are and then once you are closer, enter a new count. If you only
want to jump ahead by one s character, you don’t need to enter a count, just press f by itself
and you’ll move ahead.	

If you miscounted or misguessed and jump too far, fear not! You can take advantage of the
fact that Shift-F means “find backwards”, and can also be counted. So if you need to move
to the 15th highlighted s, it’s totally fine to guess 18f, realize you’ve gone three too far, and
use 3<Shift>F to jump back to the previous character.	

Moreover, if you know that the character you are looking for is behind or above your cursor
in the document, you can enter find mode with Shift-F instead of f in the first place. this
will immediately start a backwards find operation instead of a forward one. And if you
know right off the bat that you want to jump back or ahead by three instances of the given
character, you can even use a count when you first enter find mode.	

There is also a subtle variation of Find mode that I call “To” mode, although the official Vim
mnemonic is actual “’til” mode. You enter it with a t or Shift-T depending on what
direction you want to go.	

“To” mode behaves identically to find mode except that it jumps to just before the target
character.	

You might think that to mode is kind of redundant because you could fairly easily use find
mode followed by a single h to move the cursor left. But “To” mode is extremely useful when
you are combining it with operations to edit the text, which we will discuss later. As a taste,
if you use the command d2ts, it will delete all text between the cursor and the second s it
encounters, but leave that s alone. This is than the d2fsis<Escape> that would be
required if you used a find command and then had to enter insert mode to add the s back.	

Moving by Words

When f or t feels too big, and cursors with counts feel too small, you’ll most likely want to
use the word movement commands. In other editors and IDEs you might be used to getting
this functionality by holding Control or Alt (depending on the operating system and
editor) while using the arrow keys.	

Neovim is easier; you don’t have to move your hands to the arrow key section of the
keyboard and you don’t have to hold down multiple keys at once.	

Instead, you can just enter normal mode and press the w key to move to the beginning of the
next word. If you instead want to move to the end of the current word, use the e key. If you
are already at the end of the current word, e will go to the end of the next word. This is
useful when you want to combine it with counts: If you need to move to the end of the word
that is two words after the current word, press 3e. This is the same as pressing e three
times, which would move to the end of the current word, then the next word, and finally to
the end of the word you want to hit. w can also be prefixed with a count if you need to move
to the beginning of a word that is a certain number of words after the current one.	

Use the b key if you want to move backwards instead. This will move you to the beginning
of the current word, or if you are already at the beginning of the word, it will move to the
beginning of the previous word. As usual, use a count to move even to the beginning of even
more words.	

Surprisingly, it takes a bit more work to move to the end of the previous word, as you need
to press two keys: g followed by e. The mnemonic for this is “go to end of previous word”. In
practice, you’ll find that you hardly ever need this functionality for some reason, and the
honest truth is I usually use be (b to move to beginning of previous word, then e to go to
end of that word) to move to the end of the previous word. If you do use,ge, however, it can
be combined with a count as well. You’ll need to type something like 4ge, depending on the
count. The command g4e wouldn’t do anything useful.	

Collectively, you may occasionally hear the w, e, and b commands referred as the “web”
words. It just means “moving by words”. These are probably the most common movements
you will use, more than individual cursor positions, simply because most editing actions
tend to involve changing or deleting a word or sequence of words.	

Moving by Words, Only BIGGER

The “shifted” form of the web words also move by words, but the definition of “word” is
different. Specifically, a capital W will move to just after the next whitespace character,
where a lowercase w will use other forms of punctuation to delineate a word. Consider a
method call on an object that looks something like this in many languages:	

myObj.methodName('foo', 'bar', 'baz');	

If you cursor is currently at the beginning of that line, a w will move your cursor to the
period on the line, a second w will move you to the m, and subsequent w presses will stop at
the paren and quotes as well.	

On the other hand, if your cursor is at the beginning of the line, a Shift-W will move you all
the way to the first quote in the "bar" argument, since that is where the first whitespace
character is.	

As a visualization, here are all the stops on that line of code when you use w compared to
when you use W:	

myObj.methodName("foo", "bar", "baz")	
-----ww---------w-w--w--ww--w--ww--w---->	
------------------------W------W-------->	

The B, E, and gE motions behave similarly, moving in the appropriate direction by
whitespace-delineated words instead of punctuation ones.	

One thing that is kind of annoying both in Vim and the way LazyVim is configured is that
there’s no way to navigate between the individual words of CamelCaseWords or
snake_case_words. You can use fC or t_ and similar if you want to, but I will later show

you up how to set up the nvim-spider plugin that makes navigating these common
programming constructs simpler.	

Line targets

Very frequently, you need to move to the beginning or end of the line you are currently
editing. Often you can use I or A for this if your goal is to move to that location and enter
insert mode, but if you need to move there and stay in normal mode (e.g. for other purposes
such as to delete or change a word) you can use the ^, $, and 0 commands.	

If you are familiar with regular expressions, you might know that ^ is used to match the
start of text or start of the line and that $ is used to match the end, so the mnemonic of
using these two keybindings to match the beginning and end of the current line will
hopefully be less unmemorable than they seem at first.	

There is a certain lack of symmetry between the two, however. The $ (Shift-4) command
simply means “go to the end of the line”, as in the last character before the ending newline,
no matter what that character is. The ^ or caret (Shift-6) means “go to the beginning of
the text on this line”. The “of the text” there is important: if your line has whitespace at the
beginning (e.g. indentation), the ^ caret will not go to the very first column, but will instead
go to the first non-whitespace character.	

To move to the very beginning of the line, use the 0 key. 0 is the only numeric key that maps
to a command because the others all start a count. But it wouldn’t make sense to start a
count with 0, so we get to use it for “move to the zeroth column”.	

There is also a command to go to the end of the line excluding whitespace, but I have never
used it, probably because I usually have formatters configured to trim trailing whitespace
so it doesn’t come up.	

The two character combination g_ (g underscore) means “go to the last non-blank
character”. I guess _ kind of looks like “not a space”, so it’s kind of mnemonic? I include it to
be comprehensive, but you’ll likely not use it much. You also have the option of combining
other commands you’ve learned so you don’t have to memorize this one off. For example,
you can use the three character $ge (combining “end of line” with go backwards to end of
word) or $be to move to the last non-blank on the line. You have options; pick the one that
you find is easiest to remember or type!	

Jumping to specific lines

If you compile some code or run a linter, you will invariably be given a line number where
the error occurred (unless the compiler is particularly useless).	

You can jump to a specific line by entering the line number as a count, followed by Shift-
G. So 100G will move your cursor to line 100.	

Shift-G is a normal command, though, so you can issue it without a count, in which case
the G command will always take you to the end of the file.	

You can go to the top of the file with 1G if you want, but since this is such a common
operation, you can instead use gg (two lower case gs). The mnemonic for g in all cases is
“Go to”, and there are a lot of things that can come after a g (:help g will introduce you to
the ones I don’t cover, although be aware that LazyVim has overridden some of them).	

Since the most common place you are likely to want to “go to” is a line number, the easiest
to type G and gg commands are used for line number navigation.	

Jump History

All this jumping around can make you feel a little lost. Luckily, there are two super-useful
keybindings for going back to places you previously jumped.	

Control-o is the non-modal control-based keybinding that I use most often. I should
honestly bind it to something more accessible, I use it so much. It basically means “Go to the
place I jumped from”.	

This is super handy when you’re editing code deep in a file or module and realize you need
to import a library at the top of the file. You can use gg to jump to the top of the file, s to
seek to the line you want to add the import on, and then enter insert mode to add the
import. Now you want to go back to the code you were working on so you can actually use
the import. Control-o a couple times will take you there.	

NeoVim keeps a history of all your jumps, so you can jump between several locations
(perhaps to look up documentation or the call signature for a function) and always find a
way back.	

If you jump too far, you can use the Control-i keybinding to jump forward in history. It’s
just the opposite of Control-o. I don’t know why i and o were chosen for these; maybe
because they are side-by-side on a Qwerty keyboard? They are used commonly enough that
once you learn them, you won’t forget.	

Summary

Navigating code is a huge topic in Vim. You’ve already learned enough commands that you
can navigate a Vim window more efficiently than most non-modal editors can dream of. But

we’ve actually barely scratched the surface, and we’ll be covering a bunch of even more
useful code navigation commands in a later chapter.	

We covered the LazyVim Seek mode to jump anywhere in the visible window, and then the
scrolling commands to make sure the thing you want to jump to is visible. Then we covered
moving the cursor with the home row key and extended them with counts.	

We learned how Find mode differs from Seek mode, even though they are superficially
similar. Then we covered some standard keybindings for moving by words and to key
places on a line before jumping to specific lines. We wrapped up by covering how to
navigate to places you have jumped before.	

In the next chapter, we’ll learn more about opening files and navigating the Filesystem.	

Chapter 4: Opening Files

In the previous chapter, as a side-effect of learning about command mode, we saw how to
open files the old-fashioned Vim way, using the :edit command. Another old-school
alternative is to open them directly from the terminal shell command line, using nvim
filename.	

Both of these are occasionally handy, but LazyVim pre-configures a few more modern ways
of navigating and opening files.	

Introducing Telescope

Telescope is a wonderful plugin whose functionality should, in my opinion, be built into
Neovim by default. Since it isn’t, we have to rely on the fact that it is shipped with LazyVim
by default instead!	

Telescope is essentially a “picker” interface with preview and fuzzy search capabilities. If
you’ve used the command menu in many modern editors (or even Github or Slack), you
may know what I’m talking about. Telescope itself doesn’t care what you are picking, and
there are a wide variety of plugins available that use it for many different tasks. Telescope
ships with the most common aspects.	

The most common task you will perform with Telescope is to open a file using fuzzy search.
I use this command dozens, maybe hundreds of times per day, so it’s a good thing it’s got a
really accessible keybinding.	

The Telescope file picker is best illustrated while working in a code repository with a lot of
files. So close Neovim with Space q q and use the cd command on your terminal to

change to the directory of a project you’ve been working on recently (If you don’t have one
close to hand, clone your favourite open source project and use that instead). Then type
nvim to open Neovim again.	

Tip: I had you exit to the terminal above because it’s easy to reason about, but it is
also possible to change directories from inside LazyVim using the :cd command.
Type :cd the/path/to/the/directory and hit enter, remembering that you
can use the Tab key to autocomplete the path. Now if you use :e to open files, they
will be relative to the directory you specified. If you are using Telescope, they may
be relative to that cwd or to the project containing the current file, as discussed
shortly. Use :pwd to see what the current directory is.	

Ok, so you’re in the root directory of a large project and you want to open an arbitrary file.
Simply press Space twice (i.e. Space Space) to pop up the “Files In Current Project”
telescope picker. As I mentioned, this is the easiest keybinding to type on your entire
keyboard. The Space bar on most keyboards is big, and you’re hitting it with your strongest
digit – the thumb. As usual, just one Space will pop up the Space mode menu, and you can
see that a second Space will present you with “Find Files (root dir)”.	

For the project containing the current state of this book, the picker looks like this:	

	

screenshot	

The picker is divided into three main areas: the results list in the upper right, a preview of
the currently selected file on the right, and the Input area, in this case labelled “Git Files”.	

The input area is actively focused and currently in insert mode, so you can just start typing
the name of whatever file you want to open. This is a “fuzzy search”, (a concept popularized
by Sublime Text) which means you can skip letters, saving you oh-so-precious milliseconds.
For example, if I type ch3, my list gets filtered down to the following files:	

	

screenshot	

Only files whose paths contain those three characters in order, with possibly other
characters in between, are visible. Telescope has helpfully highlighted those three letters in
the results so you can easily see why it matched (Though, depending on the medium you
are reading, it may not be clear in the image.)	

Also notice that by default, the match is case insensitive. I typed the lowercase letter c, but
it matched the uppercase C in the filename. This is usually sufficient to narrow the search
results to what you need. However, if you do use any capitalized letters in your search than
it switches to a case sensitive mode (this is sometimes referred to as “smart case”).	

That means that Ch will match all the Chapters, but cH will not match anything at all. More
interesting, chF will also not match anything at all because the presence of the capitalized F
makes the whole thing case sensitive, and the chapters are all named with a capital C, so the
lowercase c is not able to match them.	

Another neat Telescope matching trick: Sometimes you will start typing a word and realize
you need to match something earlier in the path to distinguish it. For example, I started
typing outline in these source files from Fablehenge:	

https://www.fablehenge.com

	

screenshot	

Outline is a common word in this app. There are 243 matching files, and I realize I should
probably have typed comp in front to narrow it to just files in the component directory. I
could switch to normal mode and edit the beginning of the line, but it’s faster to just type
<space>comp. Telescope will interpret the space as “filter the lines again fuzzy matching
this new word from the beginning”. Here we can see that only comp...outline files have
been matched:	

	

screenshot	

This image might be a bit surprising; the most promising match is obviously the one at the
bottom of the list (which is why it is selected). The other 27 matching lines contain all the
letters of the word “outline” and all the letters of the word “comp” in order from left to
right. However, because of the fuzzy matching algorithm, the two can actually overlap! So
on e.g. the second-to-last entry, the c of the matching “comp” is before the word outline,
the o is in it, and the m and p both come after the word outline. Telescope doesn’t care,
though it will rang matches with the matching letters closer together as more important, so
they’ll be visible at the bottom of the results.	

You can use the up and down arrow keys to select a different file in the search results, and
its preview will show up in the right-hand window. Once you find the file you want to open,
press the Enter key to open it in the currently active Neovim window.	

The Telescope input area even has its own normal mode! You can get into it using a single
press of the Escape key. Now if you press j or k, you’ll be able to select different files in the
list without moving your hand to the arrow keys. Further, the h and l keys will allow you to
move the cursor within the input box and you can use the i or a keys to enter insert mode
at the new location. The “but bigger” I and A keys allow you to move the cursor to the
beginning or end of the line and enter insert mode as well.	

You can even use seek mode, as we discussed in Chapter 3, though it works a bit differently.
When you press the s key while in the telescope picker’s normal mode, you can skip the

part where you enter a character to search for. Instead, LazyVim will immediately label
every line in the picker with a character to the left of the filename:	

	

screenshot	

These characters are labels for each line in the picker. Simply press one of the shown letters
on your keyboard, and whichever line the label associated with that letter is on will be
selected. Then press Enter to actually open the file.	

Finally, if you are in the Telescope window and decide you don’t want to open any files after
all (or you got the information you needed from looking at the preview and therefore don’t
need to open it all the way), press Escape twice. Once to enter normal mode in the
Telescope picker, and a second time to close the picker.	

If you need to scroll the preview window to see something lower down in the file, the same
Control-d, Control-u, Control-f, and Control-b keys that we discussed in the Basic
Navigation chapter can be used.	

The difference between “Root” and “cwd”

The <Space><Space> command is mapped to “Find Files (Root Directory)”. Two other
ways to open telescope are to use <Space> f to open the “file/find” menu, and either f or
F again.	

<Space>ff is the same as <Space><Space>. It opens “Find Files (Root Directory)” and is
just another longer way to get there. I assume it exists in both places so that users can
choose to map some other action to <Space><Space> and still be able to access that
functionality; <Space><Space> is the easiest keybinding to hit on the keyboard, so it
makes sense to assign it to your most common action. If that action isn’t opening files with
Telescope, you will still want to be able to do that with the slightly longer <Space>ff
keybinding.	

<Space>fF, where the second F is shifted, is similar; it is mapped to an action called “Find
Files (cwd)”. If you run it in your project, you’ll probably find that it appears to do the exact
same thing as “Find Files (Root Directory)” (depending on how your project is set up), so
the purpose of two separate keybindings may be confusing.	

Current Working Directory

cwd stands for “Current Working Directory”, and by default, it refers to whatever directory
your terminal was in when you typed nvim to open the editor. As I mentioned briefly while
discussing tab completion in the command menu, you can change the cwd for the entire
editor by entering command mode with : and then typing cd path/to/directory
(remember, all commands are followed by a carriage return, so press Enter or Return
afterwards). Now if you use <Space>fF, the list of files will be shown relative to the new
directory you have changed into.	

If you are unsure what directory you are in, you can use the :pwd (short for “print working
directory”) command to have it pop up in a little notification window. cd and pwd are the
same commands used by bash, zsh, and many other shells for changing and printing the
working directory, so they may already be familiar to you.	

We haven’t discussed splitting your editor or opening new tabs yet, but this is a good time
to note that it is actually possible to have different working directories for different
windows. The command to change just the current window’s directory is :lcd, short for
“local change directory”. This can be a powerful way to work on multiple projects at the
same time (for example, if you are a full stack developer working on backend and frontend
projects). However, the LazyVim concept of a “Root” directory can semi-automate a lot of
this.	

Root directory

The root directory is not a Vim concept, but is instead a Language Server Protocol (LSP)
concept. LSPs are the reason that VSCode became so popular so quickly; the idea was that
the editor could call out to an external service running on your computer to find out useful
things about the codebase. The LSP powers a lot of useful stuff such as go to definition and

references, highlighting errors in your code, and showing documentation for a variable or
class. It can even help with formatting and syntax highlighting!	

The root directory is the directory that the LSP infers is the “home” directory of the
currently open file. How the LSP does this is language (and language server) dependent. For
example, in Javascript or Typescript projects it probably searches parent directories for the
presence of a package.json or tsconfig.json file to detect the root directory, whereas
in a Python project it might instead look for things like pyproject.toml or poetry.lock,
and Rust projects use the directory that contains a Cargo.toml. Or the LSP might just use
the presence of a .git folder as the “root” of the project’s workspace.	

The only reason this root directory is “often the same as your cwd” is that this is usually the
folder you want to work from when you are working on a project, so it’s the one you cd into
before you open Neovim.	

This automatic root directory thing can be super useful if you are working on multiple
projects. Instead of using lcd as discussed in the previous section, you can just open a file
in a different project using :e or one of the file finding extensions we’ll discuss next. Then if
you invoke the “Find files (root dir)” command using <Space><Space> or <Space>ff, it
will look for other files in the same root directory as the one you just opened.	

However, it can sometimes be confusing, especially if you are working in a so-called
monorepo or if you have root directories in places you don’t expect. For example, I have a
fairly normal Svelte project that has a package.json file in it. This projects uses Cypress
for testing, and the Cypress folder has a tsconfig.json file in it that causes the Typescript
language server to interpret that as a separate root. So if I am working on one of the cypress
test files and press <Space><Space>, the root directory is considered the Cypress folder
and I can only open other cypress tests. But often the thing I wanted to do was open a
source file in the main folder to see why a test is failing. In this case, I have to press
<Escape><Escape> to exit the Telescope picker, then <Space>fF to open the picker in
current working directory mode instead.	

Telescope file finder isn’t the only LazyVim tool to use the related concepts of working and
root directories, and we’ll discuss two others next.	

The Neo-tree.nvim plugin

Neo-tree creates a left-sidebar file explorer experience that should be familiar to users of
many modern IDEs and editors. While, like many of those environments, Neo-tree does
work with the mouse, it is optimized for keyboard interactions, making it faster to work
with once you learn “Neo-tree mode”.	

I want to be upfront and honest here: I don’t personally use Neo-tree. I find that the
Telescope picker is the fastest way to open files, and when I need to manipulate the
filesystem, I prefer to use mini.files, which we will discuss shortly. The primary reason I
prefer mini.files is that it uses the same keybindings as vim normal mode. Modes are
great, but having more than necessary is not!	

However, over my lifetime, I have received plenty of hints that I may be rather weird! I
suspect that many readers will prefer the familiar tree view experience Neo-tree provides,
and since this plugin ships with LazyVim by default, I want to make sure it gets fair
coverage in this book.	

Let’s start by opening Neo-tree using the <Space>-e keybinding, where the mnemonic is “e
for Explore”. If you pop up the space mode menu, you’ll see that, as with telescope, there are
two ways to open the Neo-tree explorer: <Space>-e for Explore Neo-tree (root
directory) and <Space>-E for Explore Neo-tree (cwd)`.	

“Root directory” and “cwd” have the same meaning we discussed in the previous section,
and you will notice the consistent relationship between lowercase and uppercase letters:
<Space>ff and <Space>e both open the root directory, and <Space>fF and <Space>E
both open the current working directory.	

Tip: To hide the explorer window, just press <Space>e again while it is visible, or
press q while the explorer window is focused.	

When the explorer is opened, it shows all the files and folders in the relevant directory, with
all the folders collapsed, except for the one containing the currently active file, if there is
one. For example, while editing this file, my Neo-tree looks as follows:	

	

screenshot	

It may not show up clearly in the screenshot, but the cursor is on the file I’m currently
editing. I can move that cursor up and down using the arrow keys or the ubiquitous j and k
keys.	

Folders are collected to the top of the view. If you move the cursor to one of these folders,
you can press the Enter key to expand the folder. And if you move it to a file, you can open
the file in the current vim window with the same Enter keypress.	

You can also expand and collapse folders and open files by double clicking with the mouse,
but my guess is you won’t want to do that once you learn proper keyboard navigation.	

Speaking of keyboard navigation, yes, j and k to move up and down can be super slow if
there are a lot of files to navigate. All of the commands that we discussed in Chapter 3 can
be used to move faster. For example, 10j will move the cursor 10 lines down with just three
keystrokes compared to pressing j 10 times, and Control-d or Control-u can be used to
scroll the tree down or up. Most interestingly, s can be used to Seek to any line in the Neo-
tree view, even if Neo-tree is not currently focused.	

Neo-tree will show the root or cwd as the topmost directory. If you need to navigate “up”
the tree to a higher-level directory, you will need to use the Backspace key.	

Tip: Backspace is often coded as <BS> in Vim, so if you see a keybinding or
instructions telling you that <BS> does something, they aren’t full of (bull)! It just
means Backspace.	

In addition to navigating and opening files, you can even make changes to the file system
using Neo-tree. For example, to delete a file, you can move the cursor over that file and hit
the d key. You’ll be prompted with a popup window asking if you are sure; hit y and then
Enter to confirm it:	

	

screenshot	

To add a file or folder/directory, use the a key and enter a new name. Use a trailing slash (/)
to indicate a folder. You can also use the A key in the explorer to add a folder without having
to type a trailing slash.	

The r key can be used to rename the or folder under the cursor.	

To copy or move a file, you can use Neo-tree’s pseudo-clipboard. I say “pseudo-” because
you can’t use this to copy a file to be pasted in MacOS Finder or Windows Explorer; only to
other places in the Neo-tree.	

To cut a file with the intent of moving it somewhere else in the tree, use the x command. If,
instead, you want to copy the file, use y. The mnemonic for y is yank, and is actually the
same key you would use to copy text in the normal editor. To complete the move or copy,
you’ll need to navigate to the folder you want to move or copy it into and use the p key
(which you may recall means “put” or “paste”).	

Neo-tree also has a Filter mode that I find quite clumsy; it’s really just a cheap imitation
Telescope picker in a smaller window, so I recommend using the Telescope picker instead.
You can access it using / and enter some characters to limit the search results to files that
match those characters. Then use the up and down arrows to navigate the list (j and k
won’t work here because you’re in a sort of Insert mode context).	

There is a ton of other cool stuff that Neo-tree can do. We will cover its use for buffer, git,
and symbol navigation later, for example. In the meantime, you can use the ? (mnemonic
“ask question for help”) key while the Neo-tree window is focused to get an
overview, :help neo-tree if you want to drink from the firehose.	

The mini.files alternative

As I mentioned, I don’t actually use Neo-tree for file navigation. I find that it feels kind of
“foreign and un-vim-like”. To me, it is a completely separate experience that just happens to
be embedded in a vim window. That said, I also don’t like the tree view sidebar experience
in VSCode and the editors it emulates / is emulated by, so it’s possible that tree views just
aren’t right for me.	

These are just my opinions, and one of the golden rules of text editors is “all opinions are
valid” (otherwise there would be war). A large number of Neovim users love Neo-tree, and
you should use it if it matches your mental model.	

That said, I’m clearly not alone in these opinions, because LazyVim optionally provides a
different file management experience called mini.files. It is disabled by default.	

mini.files is part of a suite of fairly random Neovim packages known as mini.nvim.
These plugins are largely independent from each other and provide a lot of common
features that in many cases ought to ship with NeoVim. In some cases, the mini.nvim
plugins are inferior to other plugins that they clone, but a number of them are best in class.
mini.files is not the only mini plugin that ships with LazyVim, and we’ll touch on others
later.	

The mini.files file manager is kind of like a Neovim-native experience of the columnar
view that is popular in MacOs finder, among other file managers. The main reason I like it is
that editing the directory listing is just like editing a normal text buffer. I don’t have to
remember that a means “after” in Normal mode, but it means “add file/folder” in Explorer
mode. Instead, in mini.files, I use the o key to “create a new line below the current line”, and
then enter the file name in Neovim Insert mode. Later, I tell mini.files to sync my
changes and it will create the file for the new row.	

In order to use mini.files, you have to enable it as a Lazy Extra. I go into more detail
about Lazy Extras in the next chapter (When I told her the first draft of this chapter was
over 8100 words long, my editor said “Dear Lord lol”), but the basic instructions are:	

• Type :LazyExtras<Enter>	
• Move your cursor to the line that contains mini.files (Seek mode is fastest)	
• Press X to install the eXtra	
• Wait a moment for the plugins to install	
• Restart Neovim	

Using mini.files

Once installed, you can show the mini.files view using <Space>fm and <Space>fM. By
default, these are not quite the same as the cwd/root structure we’ve seen in Telescope
and Neo-tree. Instead, they are listed in the <Space>f menu as follows:	

m -> Open mini.files (Directory of Current File)	
M -> Open mini.files (cwd)	

The default mini.files configuration doesn’t have an open in root option. I like having the
ability to open the directory of the currently open file, but I don’t like losing the ability to
open the root of the current project. I show how to address this in the next section where
we discuss keybindings.	

Instead of a sidebar, the mini.files menu shows up as columns of windows (known as
Miller columns) side-by-side. For example, here’s what happens when I open mini.files to
the current working directory of this book:	

	

screenshot	

This book is published as a svelte-kit app. The left-hand pane shows the current working
directory, and the right pane shows the contents of the src directory, which is the “focused”
folder in the left pane.	

Interacting with mini.files is very similar to interacting with a standard vim window.
You can use the j and k keys to move the cursor up and down. If this places your cursor
over a folder, the contents of that folder will immediately show up to the right, and if it is
over a file, you will see a preview of the file (by default, the previews are smaller than what

I have in these screenshots; I’ll show you how to change that in the next section if you have
the screen real estate for it).	

If you want to move “into” a folder to interact with the contents of that folder instead,
simply press the l key to move “right”. Here, I moved my cursor into the src folder, which
immediately opened the file under the cursor in a new preview window.	

	

screenshot	

Similarly, pressing h will move “out” of the current folder. If the cursor is in the left-most
column, moving left will open a new left-most column, so you can navigate right up to the
root of your file-system if you need to.	

To open a file in the currently active Neovim window, press l on that file again. The
behaviour here may be a bit surprising; the file will open under the mini.files view, but it
won’t hide the file menu. This allows you to open multiple files before closing the navigator
(which can be done with the q key).	

The beautiful thing about mini.files compared to Neotree is that the little windows act
like normal editors, and all the navigation features you have become used to are available.
For example Seek mode can be used to navigate to a file. Press the s key and then any
number of characters you want to search for. Any matches to the typed characters will be
labelled and you can jump to them by typing the indicated label.	

Even modifying the filesystem is exactly the same as editing a normal buffer. We haven’t
really covered editing yet (I’m just as surprised as you are), but here’s a quick overview:	

• To rename a file or folder, navigate to the line that has it, and enter insert mode to
change or add text.	

• Deleting a file or folder uses the command dd which is the keybinding to delete an
entire line of text in normal Neovim windows.	

• Copy a file or folder with yy the command to copy (yank) a line of text	
• Put/paste a deleted or yanked file with p.	

We’ll discuss these commands and more in Chapter 6. The main point is that pretty much
any navigation or editing command you learn in the future will work with mini.files.	

Saving Filesystem Changes

Any modification that you make using these keybindings will not actually be saved on the
filesystem until you type the = key, which is a (rare) mini.files specific keybinding. I
think of it as meaning “make the filesystem equal to what I’ve typed”. This will pop up a
little window telling you what actions mini.files wants to take on your behalf, such as
deleting, moving, renaming, or copying files. You can confirm or decline the changes with a
y or n (yes or no, of course).	

I encourage you to play with both Neo-tree and mini.files until you can make a decision as
to which of the two you prefer. Eventually, you will arrive at one of the following
conclusions:	

• You prefer Neo-tree and don’t need mini.files. In this case, revisit the LazyExtras
mode and disable mini.files with the x key.	

• You use Neo-tree for some interactions (possibly things we haven’t covered yet, such
as navigating git, buffers, or symbols) and mini.files for others. In this case, you
are probably content with the default LazyVim configuration of the mini.files
extra.	

• You are my kind of weird and don’t want to use Neo-tree at all, preferring only
mini.files.This exact situation is discussed in the next chapter as we learn more
about configuring plugins.	

Summary

In this chapter, we learned not one, but three different ways to open files and interact with
the filesystem in LazyVim: Telescope, Neo-tree, and mini.files. Each provides a different
mechanism for opening files, and you will find some of them more comfortable than others.	

As a side-effect of studying these filesystem tools, we learned a little bit about configuring
plugins and installing LazyVim extras. we will go into more detail of this in the next chapter.	

Chapter 5: Configuration and Plugin Basics

I’ve mentioned plugins a few times previously and you even got to see the lazy.nvim plugin
manager in action back in Chapter 1. LazyVim has a unique multi-layered approach to
managing plugins that requires a bit of description, but is very elegant in practice.	

Installing plugins allows you to configure NeoVim to do things it can’t do by default. Plugins
are written in either Lua or VimScript (though most NeoVim users prefer Lua-based
plugins).	

The Three Categories of Plugins in LazyVim

The simplest plugins to use in LazyVim are pre-installed by LazyVim itself. You’ve used
many of them already. Some, such as Neo-Tree, Telescope, and lazy.nvim provide custom UI
components to interact with them. Others, such as flash.nvim and which-key provide new
commands or modes to work with. Still others operate quietly in the background auto-
matching parenthesis or tags and drawing indent guides.	

These plugins are preconfigured in LazyVim with sane defaults. Because they are so well
integrated, customizing those defaults is doable, but sometimes requires a few tricks that
we will cover in this and later chapters.	

The second category of plugin in LazyVim are the so-called “Lazy Extras”. These plugins are
not enabled by default, but can be enabled with just a couple of keystrokes if you want
them. Lazy Extras exist to make it easy to install popular plugins with a configuration that is
guaranteed to play nicely with the other plugins that ship with LazyVim.	

The third category includes third-party plugins that LazyVim has no awareness of. You will
have to configure these plugins from scratch and do your own due diligence to ensure that
keybindings and visual artifacts don’t conflict with the plugins that LazyVim manages. In a
non-LazyVim configuration, all plugins fell in this category, and it could be a headache to
maintain as plugins evolved and fell out of use over time. In LazyVim, relatively few plugins
fall in this category, so the whole experience is much more pleasant.	

As a specific example consider these three Neovim plugins for file management, two of
which we discussed in the previous chapter:	

• Neo-tree.nvim ships with LazyVim and is active by default. The LazyVim
configuration for Neo-tree does not conflict with other LazyVim plugins by default.	

• mini.files ships as a Lazy Extra, and is basically a “one click” (or, since this is vim
we’re talking about, one keypress!) install that is guaranteed to work with LazyVim.	

• oil.nvim is an alternative plugin for filesystem management that LazyVim does not
explicitly support. You can install it in LazyVim with a few lines of configuration, but
it’s not quite as easy to set up as mini.files and there is no guarantee it won’t
have conflicts you need to sort out yourself.	

From NeoVim’s point of view, all these plugins are exactly the same, as NeoVim only knows
about third-party plugins. LazyVim just comes with a bit of extra structure that you need to
think about when using plugins. Usually this structure simplifies things, but sometimes it
gets in the way.	

Lazy Extras

In the previous chapter, I covered how to use mini.files, but I was pretty terse on the
installation instructions. Now we’ll get to dive deep.	

The Lazy Extras mode can be accessed by pressing x from the dashboard. If you aren’t on
the dashboard, you’ll need to enter command mode with : and type LazyExtras followed
by the usual Enter to confirm a command (Incidentally, you can also show the dashboard
at any time by typing the command :Dashboard).	

Either way, you’ll be presented with a list of possible plugins to install. On my setup this
looks as follows:	

	

screenshot	

I’ve installed over a dozen extras at the moment, mostly for the various programming
languages I dabble in. You can navigate this file using all the standard navigation commands
such as j and k s.	

No matter how you get there, once your cursor is on the extra you want to install (such as
editor.mini-files) line, just hit the x key to install the extra. If you want to uninstall it,
do the same thing; move to the appropriate line (now under the list of Enabled extras), and
hit x to disable the extra. The mnemonic here, of course is that x means “Extra”.	

You may need to quit and restart Neovim for lazy.nvim to pick up that the extra has been
installed and sync it’s dependencies.	

While we’re in the LazyExtras screen, I recommend enabling the lang.* extras for
whichever programming languages you use most frequently. I wouldn’t install any other
extras until you’ve either encountered them later in this book or had a chance to research
them after you finish the book. Otherwise, they may change behaviours in ways that I won’t
have the foresight to write about.	

You can find more information on each extra by visiting https://lazyvim.org and clicking
the “Extras” menu item on the left menu bar. It includes links to the list of plugins each extra
installs as well as the configuration LazyVim brings for that extra.	

Disabling a Built-in Plugin

Sooner or later, you’re going to want to edit your LazyVim configuration. The out-of-the-box
defaults are wonderful, but the odds are that they don’t 100% exactly match your personal
needs (unless you are the LazyVim maintainer, in which case, I am compelled to say, “Hello,
folke, I love LazyVim!”).	

While the vast majority of LazyVim’s default plugins are no-brainers that you want to keep,
you may find there are one or two plugins that you just don’t need. In most cases, it doesn’t
actually matter, since LazyVim only loads plugins when you actually use them, so you can
just ignore the ones that aren’t relevant to you.	

In my case, the one plugin I have disabled is Neo-Tree, as I foreshadowed in the previous
chapter.	

The LazyVim configuration can be opened from the dashboard by simply pressing the c key
. Or you can use Space Mode to access the configuration files at any time using <Space>fc
for “Find Config Files”.	

This will load the lazyvim config folder in Telescope. This folder is typically
$HOME/.config/nvim. Neovim loads $HOME/.config/nvim/init.lua by default, and if
you weren’t using LazyVim, this is where you would do all your configuration.	

With LazyVim, init.lua just uses the lua require statement to include the LazyVim
configuration infrastructure. You will normally not have to touch this file, instead following
the “LazyVim way”.	

In addition to a barebones init.lua, LazyVim has put a few configuration files and a bit of
folder structure in the configuration directory.	

For now, the main thing we need to know is that any lua files inside the lua/plugins
subdirectory will be automatically loaded by LazyVim, no matter what their name is. I have
a number of different files in this folder for my custom configurations.	

https://lazyvim.org

I call the one that holds my disabled plugins disabled.lua. The easiest way to create this
file is to open one of the existing config files and use either neo-tree or mini.files to create a
new file, as described in the previous chapter.	

When I created my disabled.lua file in the lua/plugins directory, my intention was to
collect all the LazyVim plugins I don’t want in it. Turns out that’s a really short list! The
contents of this file is simply:	

return {	
 { "nvim-neo-tree/neo-tree.nvim", enabled = false },	
}	

If there are any other plugins that LazyVim enables by default that you don’t want to use,
just follow the same syntax. The first argument in the lua table is a string containing the
github repo (with owner) you want to disable. The second argument is to set enabled =
false. That’s it!	

Tip: You will inevitably forget the return statement at the beginning of a plugins
file at some point. Now you know to watch out for it.	

If you don’t know the Lua language… honestly, don’t worry about it. I’ve never formally
studied it, but I’ve picked up enough by osmosis to easily maintain my Neovim
configuration.	

If you’re less foolish than me, you might want to type :help lua and read the official
Neovim docs on the topic. followed by :help lua-guide-api.	

Modifying Keybindings (example)

Keybindings are one of the few things I don’t love about working with LazyVim, although
it’s not strictly LazyVim’s fault. I just never quite know where to define the damn
keybindings.	

There are basically three possible places to configure keybindings, depending on how any
given plugin is configured:	

• In .config/nvim/lua/config/keymaps.lua. This is where you configure or
modify keybindings that are not specific to plugins, but rather modify core NeoVim
functionality. But sometimes, the plugin is configured such that you need to set up
the plugin keybindings in this file, too.	

• In the keys field of the lua table (in Lua, a “table” is like a record or dict in many
other dynamic languages) passed to a plugin. This is typically where you map global

normal mode keybindings to set up a plugin. This is what we will do with
mini.files.	

• In the opts (options) argument passed into a plugin’s confugration. The format of
the options for any one plugin are plugin specific, but many plugins prefer to set up
keymaps on your behalf through options instead of having you do the mapping
yourself. This is especially true if the keymaps define a different “mode” or only
apply if the plugin is currently open or active. I’ll give an example of this with
mini.files as well.	

To demonstrate, I want to “fix” the fact that mini files doesn’t have a “open in root” option. I
like the “open in directory of current file” option, but I also want to be able to open in the
root directory.	

Since we’ve disabled neo-tree, I’m going to steal the <Space>e and <Space>E
keybindings and reuse them for mini.files, then I’ll remap the existing <Space>fm
keybinding to open the root so I can access all three modes. You can, of course, choose
different keybindings if they map better to your mental model or you are keeping neo-tree
around.	

Using mini.files, I created a new file named extend-mini-files.lua in my .config/
nvim/lua/config/plugins/ directory. As with the disabled.lua file, this file can be
named anything so long as it’s in the plugins directory. I have a habit of prefixing any
configuration that I am using to overwrite the defaults provided by LazyVim with the word
extend.	

This makes it easy to distinguish it from non-LazyVim plugins I’ve installed when I’m listing
the directory using mini.files or Telescope.	

Inside this new file, I used this code:	

local Util = require("lazyvim.util")	
	
return {	
 "echasnovski/mini.files",	
 keys = {	
 {	
 "<leader>e",	
 function()	
 require("mini.files").open(vim.api.nvim_buf_get_name(0), true)	
 end,	
 desc = "Open mini.files (directory of current file)",	
 },	

 {	
 "<leader>E",	
 function()	
 require("mini.files").open(vim.loop.cwd(), true)	
 end,	
 desc = "Open mini.files (cwd)",	
 },	
 {	
 "<leader>fm",	
 function()	
 require("mini.files").open(Util.root(), true)	
 end,	
 desc = "Open mini.files (root)",	
 },	
 },	
}	

The first line imports the lazyvim.util module so we can use the handy Util.root()
function it provides. I found this by reading through the default configuration for the
Telescope find files and Neo-tree plugins, which is conveniently provided on the LazyVim
website.	

Then we return a Lua table, wrapped in curly braces. Lua tables can act as an array and a
dictionary at the same time. In this case, the first element in the table is the string
"echasnovski/mini.files". It doesn’t have a named key, so it’s kind of like a “positional
argument”.	

The second element in the table is more like a “named argument” in that it is indexed with
the name keys, and the value is another Lua table. However, the second table acts more like
an “array” of three values (three more separate lua tables) because it doesn’t have named
indices.	

It is important to understand that the keys field is merged with the keys that are provided
by the default LazyVim (extras) configuration for mini.files. If there are conflicts (such
as with <space>fm), my values take precedence over the defaults.	

This is a powerful feature of LazyVim that allows you to use hosted configuration provided
by LazyVim but override it as needed. Older Neovim distros tended not to have this level
flexibility.	

To be clear, keys is a LazyVim concept (technically, it’s actually part of the underlying
lazy.nvim plugin manager). Any plugin configuration can have a keys array table, and

those keybindings will be merged with the default NeoVim keybindings, the LazyVim
keybindings, your custom global keybindings, AND any other plugin keybindings.	

Yes, that’s a lot of potential for conflicts, which is why I’m so glad LazyVim has done most of
the configuration for me!	

Structure of a keys entry

Each item in the keys table is another Lua table with (in this case) three fields. The first
two fields are positional and represent the keybinding name and the lua callback function
that gets called whenever that keybinding is invoked. The third field is a named field, desc
and provides a string description that will be shown in the Space mode menu.	

The keybinding sequence in the first entry is using a standard syntax that comes from Vim.
Recall that <leader> is an old Vim concept that allows you to configure which key is used
as the prefix for custom keybindings. In LazyVim (and indeed, for most modern Neovim
users), the leader is <Space>. Special keys are indicated to Vim’s keybinding engine using
angle brackets, so you will often see notations such as <Space>, <Right>, <Left> or <BS>.	

After the <leader> string, we include any additional keys that need to be pressed. For the
simple ones, we have e and E to replace the Neo-tree keybindings we disabled with new
mini.files keybindings. The third one is a bit more complicated, as the f indicates that
this action will be available under the file/find submenu in Space mode, and the m
indicates which letter will be in this menu.	

For the callbacks, we use Lua functions, which always start with function and end with
end. These are anonymous (unnamed) functions, and they don’t accept any parameters
inside the parentheses. The function bodies we call specific code to open mini.files the
way we want. In two cases I just copied this code from LazyVim’s default mini.files
configuration, and in the third, I cobbled it together by combining code from the Neo-tree
and mini.files configurations.	

Customizing the mini.files Options

As I mentioned, the keys table is merged with the default keys table that LazyVim has
configured for mini.files. Similarly, most NeoVim plugins can be configured with an
opts table that contains custom configuration specific to that plugin. If you supply an opts
table, it will be merged with the default LazyVim one (if there is one).	

You’ll need to read each plugin’s documentation (often available on Github, and usually
available with :help plugin-name) to know exactly what options are available for each
plugin. You’ll also need to review the default configuration that LazyVim is setting up for
that plugin so you understand how it will merge.	

In my case, I pass the following opts array to mini.files:	

return {	
 "echasnovski/mini.files",	
 keys = {	
 -- the keybindings from above	
 },	
 opts = {	
 mappings = {	
 go_in = "<Right>",	
 go_out = "<Left>",	
 },	
 windows = {	
 width_nofocus = 20,	
 width_focus = 50,	
 width_preview = 100,	
 },	
 options = {	
 use_as_default_explorer = true,	
 },	
 },	
}	

The mappings table in mini.files is used to override the default keymappings that are
active while the mini.files view is open. This is different from the global keymaps we
defined earlier to open mini.files. In my case, I have mapped go_in and go_out to use
the arrow keys instead of h and l because of the left-handed Dvorak Kinesis weirdness I
described previously. I don’t recommend you make this change; h and l will work better for
most anybody who isn’t me.	

The window options are there because I have a 32” 6k monitor, which means I can afford to
have larger-than-normal explorer columns. Refer to the mini.files help for more
information on these options.	

So now you know a little bit about configuring plugins in LazyVim. It is both a little bit
easier and a little bit harder than configuring plugins from scratch:	

• It is easier because you only need to change the values that are non-default, instead
of setting up an entire configuration, and LazyVim comes with very sane defaults.	

• But it is harder because you sometimes have to think about how the option and
keybinding merging happens, which wouldn’t be necessary if you just had one great

big configuration object to begin with. This merging can get quite tricky for plugins
that have complicated default LazyVim configurations.	

Modifying Existing Options

Sometimes the “merging” behaviour LazyVim uses to overwrite options with the ones you
provide in your plugin overrides is too simplistic. This most often happens when you are
modifying a plugin that calls or defines a function for options behaviour instead of
customizing it.	

To support this situation, the opts entry in a lazy.nvim plugin’s configuration table can be
a function instead of a static table. The function accepts one argument, which is the
previous opts table as it was configured by LazyVim. Your function needs to modify this
table to suit your desired behaviour. Note that it does not return a new opts table; it needs
to modify the one that was passed in.	

For example, the default LazyVim configuration for the nvim-cmp plugin is a pretty long
and complicated function. The nvim-cmp plugin is responsible for the completion pop-up
menu that provides suggestions as you type. It is an insanely useful feature, but I don’t like
that by default (in LazyVim), selecting a completion is done with an Enter keypress. This
drives me nuts when editing text as I am right now because I press enter for new lines all
the time, often ignoring the pop-up.	

There are a couple recipes for modifying this behaviour in the LazyVim docs, and other
recipes you can try in the nvim-cmp README. In my case, I’ve configured it as follows:	

return {	
 {	
 "hrsh7th/nvim-cmp",	
 ---@param opts cmp.ConfigSchema	
 opts = function(_, opts)	
 local cmp = require("cmp")	
	
 opts.mapping = vim.tbl_extend("force", opts.mapping, {	
 ["<Right>"] = cmp.mapping.confirm({ select = true }),	
 ["<CR>"] = function(fallback)	
 cmp.abort()	
 fallback()	
 end,	
 })	
 end,	

 },	
}	

This opts function accepts the LazyVim-defined opts table as its second parameter. My
code changes those opts using the tbl_extend function provided by Neovim. I add a new
["<Right>"] key to accept the suggestion (this matches fish shell behaviour) and
overwrite the <CR> key with abort completion behavior.	

This is harder to maintain than if I just had the whole configuration the way I wanted it in
the first place. But I am willing to accept that tradeoff for all the places that LazyVim
configures things better than I would have done on my own.	

Installing third-party plugins

Installing a third-party plugin is little different from configuring a Lazy-Vim provided
plugin, except that you don’t have to worry about how the keys and opts are merged with a
default config.	

Simply create a new Lua file in the plugins directory (named appropriately for the plugin).
Inside the file, return a Lua table where the first entry is the GitHub repo and name of the
plugin, with other configuration (opts and keys, among others) after that name.	

For example, I like the guess-indent.nvim plugin to set my shift width based on the
contents of the file I am currently editing. It is maintained by the github user nmac427, so
my plugins/guess-indent.lua file looks like this:	

return {	
 "nmac427/guess-indent.nvim",	
 opts = { auto_cmd = true, override_editorconfig = true },	
}	

The opts table depends entirely on what the plugin expects. In this case, I read the guess-
indent.nvim README and found two options that I wanted to set.	

Most modern Lua plugins will be documented as having to call a setup function with a Lua
table containing the configuration. If the plugin you are trying to set up does not have
explicit Lazy.nvim instructions, don’t worry! Whatever gets passed into that setup function
is what you need to include in the opts passed to the LazyVim plugin manager.	

Another third-party plugin I recommend is chrisgrieser/nvim-spider. I have a file
named nvim-spider.lua in my plugins directory as follows:	

return {	
 "chrisgrieser/nvim-spider",	

 keys = {	
 {	
 "w",	
 "<cmd>lua require('spider').motion('w')<CR>",	
 mode = { "n", "o", "x" },	
 desc = "Move to end of word",	
 },	
 {	
 "e",	
 "<cmd>lua require('spider').motion('e')<CR>",	
 mode = { "n", "o", "x" },	
 desc = "Move to start of next word",	
 },	
 {	
 "b",	
 "<cmd>lua require('spider').motion('b')<CR>",	
 mode = { "n", "o", "x" },	
 desc = "Move to start of previous word",	
 },	
 },	
}	

This plugin doesn’t automatically set up keybindings, so I pass a keys = table to the plugin
configuration. This array is not passed to the plugin. Rather, the keys are parsed by the
lazy.nvim plugin manager and added to the global keybindings. It is convenient to keep the
keys with the plugin so all the configuration is in one place.	

I am satisfied with the default options that nvim-spider passes to its setup function
(after reading the README), so I don’t have to pass an opts array.	

The best resource for finding third-party plugins is the github repository rockerBOO/
awesome-neovim. The list is well-maintained and (most importantly) pruned regularly, so
there are no outdated or unmaintained plugins on the list.	

In practice, LazyVim already ships with the best-in-class versions of most plugins (built-in
or as extras), so you won’t have to add many of them, but if you come across any “I wish
LazyVim could…” scenarios, the answer is probably “it does and the plugin to do it is listed
in the Awesome Neovim repo”.	

https://github.com/rockerBOO/awesome-neovim
https://github.com/rockerBOO/awesome-neovim

Summary

In this chapter, we learned a little bit about how LazyVim integrates with the wider NeoVim
plugin ecosystem. It provides sane default plugins and configuration, but makes it easy to
customize that configuration for your own needs.	

We learned that built-in, extras, and unknown third party plugins are all treated slightly
differently (though consistently), and saw examples of how to install some of the plugins I
personally find indispensable.	

Now that you know how to open files and configure plugins, we can get back to some of the
nuts and bolts of modal editing. You already know how to switch between Normal and
Insert mode and you can navigate around your code. In the next chapter, we’ll cover some
basic editing features that blur the line between navigating and inserting text.	

Basic Editing

Armed with the navigation keybindings you’ve already learned and the ability to enter and
leave insert mode at will, your Vim editing experience is getting pretty close to on par with
what you might be used to in non-modal editors.	

However, moving around and inserting text is a very small part of the life of a software
developer. More often, you need to edit text. Deleting code, changing code, refactoring code
moving code around. It’s the majority of what we do.	

Yes, you can do all of these things by navigating to where you want to, and entering insert
mode. The delete and backspace keys do the same thing in insert mode that they do in
other editors. But there are far more efficient tools.	

The best part is that you already know most of what you need to take advantage of very
powerful editing commands!	

The Vim Command Mental Model

The navigation commands such as s and f and hjkl and web that you already know are
collectively known as motion commands. They move the cursor from its current location to
a new location.	

Most motion commands can be prefixed with a count, so the navigation model is always
<count><motion>. The effect of a count is usually to repeat the motion a certain number
of times, although some commands such as Shift-G for “Go to line” will use the count as
an absolute value instead. If the count is blank, the “default” count is typically 1. Even a Seek

command which uses labels is allowed to be prefixed with a count (although the count will
be ignored).	

The <count><motion> commands are great for navigation, which is all we’ve used them
for so far, but they can also be combined with a verb to do something to the text between
the cursor and the location the motion would move you to.	

Verbs come first, so the structure is always <verb><count><motion>. Navigation is the
“default” verb, so if you leave the verb blank (i.e. skip it), your cursor moves to the location
indicated by the motion. We’ll discuss several important verbs in this chapter.	

But the model keeps growing! It turns out, verbs can also be counted. The syntax becomes
<count><verb><count><motion>. I have never in my life used all four of those in one
command, however. Typically you would either do <count><verb><motion> OR
<verb><count><motion>.	

This is starting to look like a full fledged grammar (spoiler alert: it is).	

This model is nice because it allows you to divide and conquer your learning strategy, and
reuse knowledge as you learn more. First you learned motion commands. Then you learned
counts. Now you will learn verbs. If you learn new motion commands or new verbs in the
future, you can mix them with all the verbs and motions you already know and they should
behave in a predictable way.	

Various plugins try to mimic this strategy, and, well, most are successful. My main
complaint with Neo-tree is that it doesn’t operate with the <verb><motion> mental
model, but Mini.files does. Similarly, some folks argue that Seek mode violates the vim
mental model because counts don’t make sense. My opinion is that Seek mode simply
transcends counts, but it still combines cleanly with verbs so it is a valid vim model.	

A Note on Insert Mode

Like all models, this one is not perfect. For example, you can use counts with the i, I, a, and
A commands, but it’s clear that “enter insert mode” is neither a motion nor a verb.	

For example, if you type 5ifoo<Escape>, Neovim will insert foofoofoofoofoo for you.
That may not seem very useful, but if you ever want an 80 character * ruler to underline a
heading, 80i*<Escape> is pretty nifty!	

But the <count>i “not-motion” commands cannot be combined with verbs like the
navigation commands you’ve learned, so it’s important to know the limits of the model.	

So now that you understand how the motions you already know can combine with verbs to
perform actions other than navigation, you just need to learn some verbs.	

Deleting Text

I’ve previewed this a couple times already, and even if I hadn’t, you can probably guess that
the verb for deleting text is d.	

So where motion will take you to a specific location in the code, d<motion> will delete all
the text between the cursor and that location. Here are some examples:	

• dh to delete the character to the left of the cursor.	
• d3w to delete three words.	
• 3dw to delete one word, three times.	
• d^ to delete from the cursor to the beginning of the line.	
• d2fe to delete all text between the cursor location and the second e after the cursor,

including that second e.	
• d2Ta to delete all text between the cursor and the second a behind the cursor, not

including that second a.	
• dsfoos to delete text between the current cursor position and the label s that pops

up when you use Seek mode to seek to foo. Note that Seek mode always jumps to
the beginning of the word you searched for. This means that if the foo you jump to is
after the current cursor location, the oo will not be deleted, but the f will. But if the
foo you jump to is before the current cursor location, all three letters of foo will be
deleted.	

If any of those are surprising, ignore the d and refer back to earlier chapters to refresh your
memory of the motions.	

So d will work with all the motion commands you know, as well as all the motion
commands you don’t yet, and all the motion commands that are defined by plugins you
haven’t yet installed.	

When the delete command is completed, Neovim will still be in Normal mode, and you can
immediately perform any other <verb><motion><pair> combination.	

Changing Text

Sometimes you just want to delete text, but another common task is editing text. Replace a
word with another word, change spelling (coincidentally, I just misspelled “change”), delete
the rest of the paragraph and replace it with something new, etc.	

This can easily be handled by combining delete and insert mode (e.g. dwi will delete a word
and enter insert mode.) However, you can save a keystroke by using the c verb, which

means “change”. If you replace the d in each of the examples I outlined above with a c, you
will effectively get “delete the text and immediately enter insert mode.”	

Operating to end of the current line

It is very common to want to delete or change from the cursor position to the end of the
current line, leaving the beginning of the line intact. These actions happen more often than
you would expect in source code editing, so there is a shortcut for them.	

Yes you could d$ and c$ to delete or change to the end of the line, since $ is the “jump to
end of line” motion. That is the “correct” format for the mental model. However, because
this is such a common operation, you can “cheat” with one fewer keystrokes and just use
Shift-D or Shift-C instead.	

Note that there is no inverse shortcut verb for “delete to the beginning of the line”, so you’ll
have to use d^ or d0 instead, where ^ is the motion to jump to the first non-blank character
and 0 is the motion to jump to the first column.	

Operating on entire lines

Another common action is to change or delete an entire line of text. So much so, in fact, that
there are special motions for “the whole line”. These motions are accessed by duplicating
the verb. This is another place where the mental model kind of breaks down; the
interpretation of the motion depends on the verb.	

In practice, this just means that dd deletes an entire line and cc deletes it and enters insert
mode. These are nice and easy to type, so it makes for a nice shorthand.	

You can combine these bespoke motions with counts. d3d will delete three lines, and 3dd
will delete one line three times (which is faster to type because you don’t have to move your
finger off of d to hit it twice). Yes, that has the same outcome either way, but the model is
such that you can use either of them. Note that there are situations where the two formats
may have subtly different behaviours, although in practice I have never encountered
surprises.	

Some shortcuts for modifying individual characters

Another common operation is to perform a delete or change operation on a single character
or specific number of characters. You could do this using dl to delete the character under
the cursor or 4dl to delete that character and the three characters that come after it.
However, because you do this so often, there is a shorthand verb that doesn’t have a motion
(or rather, the motion is implied): x. For example, you can use x to delete an extraneous u in
words like behaviour if your editor is from the USA but you live in a member of the

Commonwealth. The single letter will be deleted, and you’ll be back in normal mode ready
to proceed.	

The x command can be used with a count, so if you want to delete five characters starting
with the one under the cursor, just use 5x.	

If you need to go the other direction and delete characters before the cursor, use Shift-X.
This, too, can have a count, and it will basically delete that many characters to the left. I
rarely use this, since the shift brings us up to two keystrokes anyway, and hx or d4h is no
harder.	

If, instead of deleting, you need to replace a character with a different character, use the r
command. This command will briefly enter insert mode while you type one character, then
immediately return to normal mode. Much fewer keystrokes for a common operation
(spelling errors are common, right? It’s not just me?) than something like cle<Escape>.
Using r with a count is possible, but the behaviour is kind of unhelpful: it will replace the
character under the cursor and the appropriate number of characters after that character
with the same letter. The only place I can imagine this being helpful is when you copy-paste
a password prompt from somewhere and need to replace all the characters in the password
with *.	

Another common operation is deleting the newline at the end of the current line. Use the
Shift-J (j stands for “Join Lines”) command from anywhere in the line. I use this one a
lot. If you need to merge multiple consecutive lines together, Shift-J takes a count. It
generally does the right thing around whitespace (replacing indentation with a single
space), but if you need to do a join without modifying whitespace, use the two-character
combination gJ.	

Manipulating Case

If you need to convert a character or sequence of characters to uppercase, use the verb gU
(That’s a Shift-U for the second character) followed by any standard navigation motion.
(Nobody said a verb had to be a single letter, though most are). I find this particular verb
frustrating because g is normally assigned to the Go To motions. In this case, (as with gJ
above) it is a verb instead.	

I guess you can think of it as “Go To and Convert to Uppercase” where U is short for
Uppercase.	

The inverse function to convert all text between the current cursor position and the motion
destination is to use a lowercase gu before the motion. Kind of weird to remember, but it
does match the common vim idiom of “u” means an action and “U” means the same action
BUT BIGGER.	

The duplicate commands gUgU and gugu do the same thing as other duplicate verbs,
applying the upper/lower case operation to the entire line. It’s a rather annoying sequence
of keypresses, though, little easier than combining gU with the ^ and $ motions (i.e. ^gU$).	

I don’t find these commands very useful. I more frequently use the ~ command, which
inverts the case of the character under the cursor.	

Tip: If you find yourself doing a lot of case switching work, have a look at the
coerce.nvim. It doesn’t have a LazyVim extra so you’ll need to configure it yourself,
but it can be worth the effort.	

Repeating Commands

LazyVim doesn’t have multiple cursor mode. There are plugins to support multiple cursors,
but in my experience they don’t work very well. Neovim does have multiple cursors on their
roadmap, so I am hoping they will come up with a paradigm that integrates nicely with the
vim mental model.	

In the meantime, Neovim provides several different tools available for performing an action
in multiple places in your code. We’ll cover basic repetitions here, and other useful
techniques in later chapters.	

Once you have performed any verb, you can navigate to another place in the document and
repeat that verb with a single keypress: . (That’s a period, although you will usually hear it
referred to as “dot repeat” in this context).	

This highlights why d and c need to be separate verbs, as opposed to using something like
d<motion>i. When you use c, the delete motion and the text you inserted is remembered,
so you can repeat the entire change with a . command. For example, if you want to replace
all instances of a variable named i with a much better name of index, you could jump to
the first instance of i and type clindex<Escape> to “change one character to index”. Then
you can use Seek mode or other navigation commands to go to the next use of i. Now just
type . to repeat the change and continue to the next instance.	

Like motions and verbs, the . command can be given a count. However, counts with . are a
little bit nuanced. Rather than blindly repeating the command <count> number of times, it
will instead replace the count of the command being repeated.	

This means that if you use the verb 3dd to delete three lines, and the next operation you
perform is 2. (“2 dot”), the second operation will delete two lines, rather than six.	

https://github.com/gregorias/coerce.nvim

Recording Commands

Vim’s command recording and playback system is extremely powerful. You can trivially
record an arbitrary sequence of navigation, editing, and insertion commands, then repeat
that sequence on demand at any location you want.	

To start a recording, press qq. Sorry, but I have no mnemonic to remember q. I have a
feeling it was just the last available key on the keyboard!	

After that, type whatever sequence of navigation, editing, and insertion commands you
want to record. Delete words, insert text, change text, search for words (don’t use Seek
mode, as the replay mechanism will have no idea what label to jump to). Virtually anything
you can do in vim (even : commands) can be recorded and replayed later.	

When you are finished recording, just press q again. The recording will be stored ready for
replay whenever you desire.	

Appending to a recording

If you partially complete your recording and then realize you need some more information
or need to make an edit before completing the recording, you can stop the recording using q
as usual and do the thing you need to do.	

When you are ready to continue recording, use qQ to record in append mode instead. The
main tip here is that you need to make sure your cursor is in a location such that the
merged recording will make sense. This usually means the same place it was when you
stopped recording, although it may depend on what changes you made in the meantime.	

Playing Back a Recording

The easiest and fastest way to play back your most recently saved recording is with Shift-
Q.	

It is possible to store and replace multiple recordings at once using registers (a stupid name
for a storage location that harkens back to humanity’s dark days of assembly
programming). I will go into more detail about registers in a later chapter.	

Undo and Redo

Obviously, these are the most important operations in the whole book! Use the u key to
undo your most recent change. Note that “most recent change” can be a pretty big whack of
text, especially if you haven’t exited Insert mode for a while. For example, I wrote this entire
paragraph in one Insert session. If I press u the entire paragraph will be lost.	

That’s ok, though, because I can redo using Control-r. Like most developers, I use both of
these extensively. (Did you know that in the old days of typewriters, secretaries had to get
100% accuracy scores on their typing tests? There was no backspace or delete key, you
see).	

Neovim actually does an amazing job of keeping track of your entire history, rather than
just the most recent suite of changes. So if you make a bunch of changes to get to state B,
then undo to state A, and then make a bunch more changes to get to state C, it is still
possible to get back to state B (ie: back out of the C changes to state A and go back up the B
changes to state B).	

It’s kind of the same concept as git branches, except your history is automatically tracked
for every keystroke you make. Working with branches of undo history using raw Neovim
commands can feel pretty clumsy, though (read through :help undo-branches if you’re
brave). Instead I recommend configuring and installing the undotree plugin.	

About 99.9% of the time, u and Control-r will be all you need, but that remaining 0.1%
can be a godsend when you need it.	

Summary

In this chapter, we expanded our understanding of the Vim mental model, and then
introduced several verbs that can be combined with the navigation motions we were
already familiar with.	

We discussed a grab-bag of other editing commands before covering how to repeat motions
using . and command recordings. Finally, we covered undo and redo.	

In the next chapter, we’ll learn about text objects and some additional nuances of the vim
mental model with operator-pending mode. Combined, these allow us to very quickly
perform actions on a huge variety of code concepts.

https://github.com/jiaoshijie/undotree

	Chapter 1: Installation
	Choosing a Terminal
	Setting Up Your Terminal Font
	Install Neovim
	Which Version should I install?
	Windows
	MacOS
	Linux

	Try Neovim Raw (If You Dare)
	Install LazyVim
	Start with a clean slate
	Clean up: Windows with Subsystem for Linux, MacOS, and Linux
	Clean Up: Windows without WSL
	Install other recommended dependencies
	Clone the starter template
	git clone: Windows with Subsystem for Linux, MacOS, and Linux
	git clone: Windows without WSL

	The Dashboard
	Lazy.nvim Plugin Manager
	A Note on Managing Dot Files
	Summary

	Chapter 2: What is Modal Editing, Anyway?
	Introduction to Modal Editing
	A note on Keybinding Mnemonics

	Visual Mode
	Command Mode
	Summary

	Chapter 3: Getting Around
	Seeking Text
	Scrolling the screen
	Z Mode

	The first rule of Vim
	Counting
	Find mode
	Moving by Words
	Moving by Words, Only BIGGER
	Line targets
	Jumping to specific lines
	Jump History
	Summary

	Chapter 4: Opening Files
	Introducing Telescope
	The difference between “Root” and “cwd”
	Current Working Directory
	Root directory

	The Neo-tree.nvim plugin
	The mini.files alternative
	Using mini.files
	Saving Filesystem Changes

	Summary

	Chapter 5: Configuration and Plugin Basics
	The Three Categories of Plugins in LazyVim
	Lazy Extras
	Disabling a Built-in Plugin
	Modifying Keybindings (example)
	Structure of a keys entry
	Customizing the mini.files Options

	Modifying Existing Options
	Installing third-party plugins
	Summary

	Basic Editing
	The Vim Command Mental Model
	A Note on Insert Mode

	Deleting Text
	Changing Text
	Operating to end of the current line
	Operating on entire lines
	Some shortcuts for modifying individual characters
	Manipulating Case
	Repeating Commands
	Recording Commands
	Appending to a recording
	Playing Back a Recording

	Undo and Redo
	Summary

