
Chapter 1: Installa/on

LazyVim	for	Ambitious	Developers	-	Chapter	1:	Install	

So	you	think	you’re	ready	to	install	Neovim?	Actually,	you	still	have	one	decision	to	make.	

Neovim	can	run	in	a	lot	of	different	contexts	(You	can	even	run	it	inside	VS	Code!)	By	
default	it	is	a	terminal	program,	but	there	are	also	tons	of	GUIs	available.	I	have	tried	almost	
all	of	them,	and,	honestly,	I	don’t	think	they	have	any	inherent	advantage	over	running	
Neovim	directly	in	the	terminal.	

We	will	discuss	hooking	up	Neovim	to	the	Neovide	GUI	much	later	in	the	book,	but	for	
starting	out,	I	recommend	running	Neovim	in	a	terminal.	A	very	good	terminal,	to	be	
speciQic.	

Choosing a Terminal

To	get	the	best	Vim	editing	experience,	you	want	a	GPU	accelerated	terminal.	What’s	that	
mean?	Basically	that	you	will	be	using	the	chip	designed	to	render	photo-realistic	video	for	
rendering	source	code.	Makes	as	much	sense	is	using	it	for	AI,	right?	

You	will	need	to	do	your	own	research	on	the	following	options,	so	ask	your	favourite	
search	engine	or	the	AI	Chat	bot	de	jour	to	help	you	decide:	

• Kitty	Terminal	is	my	personal	preference.	I	Qind	it	well-documented,	easy	to	
conQigure	and	has	all	the	features	I	need.	

• Alacritty	is	probably	the	winner	for	raw	speed,	but	conQiguration	is	awkward,	and	it	
is	less	featureful.	

• Wezterm	has	some	very	nifty	features,	but	I	found	the	documentation	to	be	lacking	
and	had	trouble	getting	some	aspects	to	work.	

• Windows	Terminal,	if	you	are	a	Windows	user,	does	claim	to	be	GPU	accelerated,	
though	I	found	that	Neovim	was	sometimes	unresponsive	in	it.	

• If	you’re	already	on	the	Warp	Terminal	train	and	you	just	can’t	live	without	it,	
Neovim	will	work	inside	it.	I	found	the	experience	a	little	choppy,	and	I	didn’t	enjoy	
the	look	and	feel	of	Warp	(or	the	fact	that	I	needed	to	sign	in	to	use	it)	

So	install	one	or	more	of	those	until	you	Qind	one	that	you	like.	You	can	use	other	terminal	
emulators	if	you	want	to.	You	probably	won’t	even	notice	that	the	experience	is	inferior,	but	

https://sw.kovidgoyal.net/kitty/
https://alacritty.org
https://wezfurlong.org/wezterm/index.html
https://github.com/microsoft/terminal?tab=readme-ov-file
https://www.warp.dev

I	can	promise	that	if	you	later	switch	to	a	GPU-accelerated	experience,	you’ll	notice	the	
improvement.	

Se6ng Up Your Terminal Font

LazyVim	and	its	plugins	look	beautiful	in	a	terminal,	and	you	would	almost	not	believe	that	
they	are	not	a	GUI	application.	To	do	this,	they	depend	on	special	fonts	that	have	a	TON	of	
glyphs	for	coding	related	things.	Most	notably,	this	gives	you	access	to	icons	representing	
the	type	of	Qile	you	have	open,	but	also	provide	nice	frames	and	window-like	behaviour	in	
the	terminal.	

To	get	the	best	LazyVim	experience,	you	will	need	to	install	one	of	these	special	fonts	and	
conQigure	your	terminal	to	use	it.	Indeed,	you	should	really	be	using	one	of	these	fonts	in	
your	terminal	even	if	you	aren’t	a	heavy	Neovim	user.	A	lot	of	modern	terminal	apps	
(there’s	a	phrase,	eh?)	look	better	if	you	have	them	installed.	

Visit	Nerd	Fonts	for	more	information	and	to	choose	a	font.	I	personally	use	the	VictorMono	
Nerd	Font	because	it	has	a	unique	typeface	for	the	italic	font	that	I	like	for	code	comment	
blocks.	

You	can	choose	from	many	of	the	most	popular	programming	fonts.	Downloading	and	
installing	them	is	very	much	operating	system	dependent,	so	I’ll	leave	the	Nerd	Fonts	
website	to	explain	it	to	you.	

Install Neovim

Installing	Neovim	is	generally	one	of	the	least	problematic	installs	you	will	encounter	as	
Neovim	works	pretty	much	anywhere	software	can	be	installed,	and	it	only	relies	on	
standard	system	dependencies.	The	chief	problem	is	that	no	matter	which	operating	system	
you	use,	you	are	spoiled	for	choice!	

You	can	visit	the	Neovim	home	page	and	click	the	“Install	Now”	button	to	get	the	latest	
instructions	for	your	operating	system	of	choice	(or	of	necessity)	from	the	Neovim	
developers.	

Which Version should I install?

Neovim	development	happens	at	a	super	fast	pace	compared	to	their	release	cycle,	so	it	is	
not	uncommon	for	folks	to	run	the	latest	nightly	build.	I	have	only	rarely	encountered	bugs	
in	builds	cut	from	the	master	branch	on	Github,	so	it’s	generally	safe.	I	usually	run	off	the	
latest	stable	release	when	it	comes	out,	and	then	when	some	new	plugin	update	says	
“here’s	a	cool	feature	if	you	use	Neovim	nightly,”	I’ll	install	the	latest	build	instead.	

https://nerdfonts.com
https://neovim.io/

I	suggest	starting	with	the	stable	version	of	Neovim	for	now,	which	at	time	of	writing	is	
0.10.0.	LazyVim	does	tend	to	add	features	from	the	nightly	release,	so	if	you	start	to	get	as	
excited	about	this	distro	as	I	am,	it	will	be	a	perfectly	natural	progression	to	switch	to	the	
pre-release.	

Windows

I	generally	recommend	using	the	Windows	Subsystem	for	Linux	(WSL)	and	doing	all	
development	in	there.	WSL	is	way	outside	the	scope	of	this	book,	but	it	is	well-documented	
by	Microsoft	and	many	online	tutorials.	Once	you	have	chosen	a	WSL-compatible	Linux	
distribution,	set	it	up,	and	have	it	running	in	your	chosen	terminal,	you	can	install	Neovim	
using	the	Linux	instructions	below.	

If	you	have	a	reason	to—or	preference	for—developing	on	native	Windows,	the	easiest	
thing	to	do	is	grab	the	MSI	installer	from	the	Releases	section	of	the	neovim/neovim	
repository	on	GitHub.	

If	you	already	use	Winget,	Chocolatey,	or	Scoop	to	manage	packages	on	your	Windows	
machine,	there	is	a	Neovim	package	in	each	of	them.	

Note	that	if	you	use	Windows	without	WSL,	you	will	need	to	install	a	C	compiler	in	order	to	
get	treesitter	support.	This	is	not	a	trivial	task.	It	is	documented	in	the	nvim-treesitter/
nvim-treesitter	GitHub	repo,	so	I	won’t	go	into	detail	here.	

MacOS

I	recommend	Qirst	installing	Homebrew	if	you	don’t	have	it	already	by	following	the	
instructions	at	brew.sh.	

Once	you	have	brew	up	and	running,	the	command	brew install neovim	will	instal	
Neovim.	

If	you	want	to	live	on	the	edge,	brew install --HEAD neovim	will	install	the	latest	
nightly	version	of	Neovim,	which	is	probably,	but	not	guaranteed	to	be,	stable.	

I	Qind	the	brew	experience	to	be	much	kinder	than	other	MacOS	installation	options	for	
Neovim,	so	if	you	aren’t	already	a	Homebrew	user,	I	strongly	suggest	exploring	setting	it	up.	
There	are	other	open	source	tools	that	you	will	want	to	install	as	we	get	deeper	into	the	
LazyVim	journey,	and	brew	will	be	the	easiest	way	to	get	them	all.	

If	you	don’t	want	to	use	Homebrew,	things	are	a	bit	more	annoying.	The	Neovim	dev	team	
doesn’t	maintain	a	MacOS	installer,	so	you’ll	have	to	download	a	tarball	and	extract	it,	then	
link	to	the	binary	from	somewhere	on	your	system	path.	If	you	don’t	know	what	any	of	that	
means,	honestly,	use	Homebrew,	it’s	easier!	

https://github.com/neovim/neovim/releases/
https://github.com/nvim-treesitter/nvim-treesitter
https://github.com/nvim-treesitter/nvim-treesitter
https://brew.sh/

Linux

If	Neovim	isn’t	available	using	your	distribution’s	default	package	manager,	you	have	a	very	
strange	Linux	distribution,	indeed!	

So	just	run	sudo pacman -S neovim,	sudo apt install neovim,	sudo dnf install
neovim,	or	the	appropriate	command	for	whichever	more	esoteric	package	manager	you	
prefer.	

If	you	want	a	nightly	version,	you	may	Qind	the	instructions	on	the	neovim/neovim	GitHub	
Releases	page,	or	will	have	to	dig	into	your	distro’s	documentation.	

You	will	also	need	to	install	a	C	compiler	in	the	unlikely	event	that	your	Linux	distribution	
didn’t	come	with	one.	For	most	distros,	just	install	the	gcc	package	and	you	should	be	good	
to	go.	

Try Neovim Raw (If You Dare)

Once	you	have	Neovim	installed,	you	can	try	it	out	by	simply	typing	nvim	(or	nvim
<filename>	to	open	a	speciQic	Qile)	into	the	terminal	you	installed	a	few	sections	ago.	If	it	is	
installed	correctly	and	on	your	path,	you’ll	get	an	unappealing	looking	editor	that	looks	like	
it	was	forked	from	something	written	in	the	90s	that	had	the	express	intent	of	looking	like	it	
was	written	in	the	70s.	

So,	at	least	it’s	honest?	

Unfortunately,	you’re	now	trapped.	To	save	you	the	frantic	“how	do	I	exit	Vim”	google	
search,	the	command	to	quit	is	Escape	followed	by	the	three	characters	:q!	followed	by	
Enter:	<Escape>	<Colon>	q	<Exclamation>	<Enter>.	

Seriously,	“How	do	I	exit	Vim”	is	one	of	the	top	three	autocompletes	on	Google	for	“How	do	I	
exit…”.	Apparently	only	a	Samsung	TV	plus	and	full	screen	mode	on	MacOS	are	less	intuitive	
to	get	out	of!	

TIP:	If	you	want	to,	you	can	run	the	command	<Escape>:Tutor<Enter>	to	open	
an	interactive	text	Qile	that	you	can	read	through	and	edit	while	learning	the	basics	
of	Neovim.	I	do	recommend	doing	this	at	some	point,	but	now	may	not	be	the	
right	time,	as	a	lot	of	things	that	are	“normal”	in	the	Vim	tutor	are	different	
(better!)	using	LazyVim.	The	rest	of	this	book	does	not	assume	you	have	gone	
through	the	tutor,	but	it	also	won’t	necessarily	cover	everything	that	is	available	
there.	

Install LazyVim

Now	that	you	have	Neovim	up	and	running,	let’s	get	it	conQigured	to	look	like	it	was	
developed	this	century.	

Installing	LazyVim	requires	a	bit	of	work	with	git.	Since	you	are	reading	this	book,	I	am	
assuming	you	are	a)	a	software	developer	and	therefore	b)	familiar	with	git.	You	can	
probably	use	whichever	visual	git	tool	you	are	familiar	with.	But…	now	that	you	have	that	
fancy	GPU	accelerated	terminal	emulator,	I	say	put	it	to	good	use.	

The	git	commands	to	install	LazyVim	are	more	or	less	the	same	for	the	various	operating	
systems,	though	paths	and	environment	variables	are	different.	

Start with a clean slate

Tip:	If	you	already	have	a	NeoVim	conQig	and	you	want	to	try	LazyVim	without	
losing	your	existing	conQiguration,	set	the	NVIM_APPNAME=lazyvim	environment	
variable.	Skip	to	the	Clone the starter template	section	below,	and	clone	
into	~/.config/lazyvim	instead	of	~/.config/nvim.	If	you	want	to	make	the	
changes	permanent,	either	set	NVIM_APPNAME	in	your	shell’s	startup	Qile	or	
rename	the	conQig	folder	to	nvim.	

First,	remove	or	back	up	all	existing	Neovim	state.	This	step	is	largely	optional	if	you’ve	
never	used	Neovim	before,	but	I	recommend	making	sure	the	following	directories	have	
been	removed	or	moved:	

Clean up: Windows with Subsystem for Linux, MacOS, and Linux

Remove	or	back	up	(with	mv	instead	of	rm)	the	following	directories:	

rm -rf ~/.config/nvim	
rm -rf ~/.local/share/nvim	
rm -rf ~/.local/state/nvim	
rm -rf ~/.cache/nvim	

Clean Up: Windows without WSL

The	location	of	the	conQig	and	data	folders	is	a	little	bit	different,	but	the	idea	is	the	same	as	
for	the	Unix	systems.	Just	use	Powershell	commands	instead	of	the	Unix	core-tools:	

Move-Item $env:LOCALAPPDATA\nvim $env:LOCALAPPDATA\nvim.bak	
Move-Item $env:LOCALAPPDATA\nvim-data $env:LOCALAPPDATA\nvim-data.bak	

Install other recommended dependencies

I	strongly	recommend	installing	lazygit,	ripgrep	and	fd,	which	are	used	by	LazyVim	to	
provide	enhanced	git,	string	searching,	and	Qile	searching	behaviours.	Most	operating	
system	package	managers	will	have	these	available	for	trivial	installation.	You	can	Qind	
more	speciQic	installation	instructions	on	their	respective	GitHub	repositories	under	
jessedufQield/lazygit,	BurntSushi/ripgrep	and	sharkdp/fd	respectively.	

Clone the starter template

You’ll	use	a	git clone	command	to	download	the	starter	template	and	copy	it	into	the	
user	conQig	directory	for	Neovim,	then	remove	the	.git	folder.	

The	starter	is	just	that:	a	starter.	So	you	won’t	ever	need	to	pull	changes	from	this	repo.	
Instead,	LazyVim	will	manage	updating	itself	and	all	its	plugins	for	you.	The	only	reason	the	
starter	is	a	git	repo	is	that	it’s	easy	for	the	LazyVim	maintainers	to	maintain.	From	your	
point	of	view	you’re	just	downloading	the	current	state	of	the	repo	and	don’t	need	to	know	
about	the	past	or	future	state.	

git clone: Windows with Subsystem for Linux, MacOS, and Linux

On	Unix	systems,	use	these	commands:	

git clone https://github.com/LazyVim/starter ~/.config/nvim	
rm -rf ~/.config/nvim/.git	

git clone: Windows without WSL

On	native	Windows,	use	these	commands:	

git clone https://github.com/LazyVim/starter $env:LOCALAPPDATA\nvim	
Remove-Item $env:LOCALAPPDATA\nvim\.git -Recurse -Force	

The Dashboard

Ok,	you	have	completed	the	most	difQicult	section	of	this	book	and	you’re	Qinally	ready	to	
start	LazyVim!	Use	the	same	terminal	command	as	before:	nvim.	

You’ll	see	a	Qlurry	of	activity	as	LazyVim	sets	everything	up	and	downloads	the	plugins	it	
thinks	are	essential.	You	may	see	it	compile	and	install	a	bunch	of	treesitter	grammars;	if	
you	see	a	message	to	“Show	More”	use	G	(i.e.	Shift+g	to	skip	to	the	end.	Once	everything	is	
installed,	you’ll	see	a	summary	of	the	plugins	that	were	installed	inside	a	window	managed	
by	a	plugin	called	lazy.nvim	

https://github.com/jesseduffield/lazygit
https://github.com/BurntSushi/ripgrep
https://github.com/sharkdp/fd

The	lazy.nvim	plugin	should	not	be	confused	with	LazyVim	itself,	though	both	are	
maintained	by	the	same	person.	lazy.nvim	is	strictly	a	plugin	manager,	whereas	LazyVim	
is	a	collection	of	plugins	and	conQigurations	that	ship	together.	One	of	those	plugins	is	
lazy.nvim.	

We’ll	be	covering	most	of	the	plugins	that	ship	with	LazyVim	later	in	this	book,	so	for	now,	
once	you	get	to	the	lazy.nvim	screen,	you	can	press	the	q.	The	plugin	will	interpret	this	as	
quit lazy.nvim	and	the	window	will	close.	

Now	you	can	see	the	LazyVim	dashboard,	which	is	the	Qirst	thing	you’ll	see	every	time	you	
start	LazyVim.	It’s	a	little	more	friendly	than	the	out	of	the	box	Neovim	experience:	

	

As	you	can	see,	there	are	several	commands	that	allow	you	to	interact	with	the	dashboard	
via	a	single	keystroke.	Most	importantly,	of	course,	is	the	q	keystroke	to	quit!	

Most	of	these	options	are	self-explanatory,	but	we’ll	discuss	a	few	of	them	more	deeply	in	
later	chapters.	

Lazy.nvim Plugin Manager

When	you	Qirst	open	LazyVim,	it	checks	for	any	plugins	that	are	available	to	be	updated,	and	
gives	you	an	overview	in	a	message	notiQication	that	will	look	something	like	this:	

	

Because	Neovim	is	pretty	barebones	by	default,	LazyVim	ships	with	a	ton	of	useful	plugins	
ready	to	go.	And	there’s	a	good	chance	they	are	out	of	date	because	plugin	development	in	
the	Neovim	world	happens	at	a	ridiculously	fast	pace.	

In	the	old	old	days,	plugin	management	was	a	completely	manual	process.	In	the	less	old,	
but	still	old	days,	it	was	managed	by	a	variety	of	plugins	that	did	the	job	but	felt	like	they	
were	lacking	something.	

Then	came	the	plugin	manager	called	lazy.nvim,	created	by	the	same	person	that	later	
created	LazyVim.	

Lazy.nvim	has	a	ton	of	slick	features,	most	notably	loading	plugins	only	when	needed	
(hence	the	name	“Lazy”)	so	that	your	editor	is	lightning	fast	to	start	up.	It	also	has	a	nice	UI	
for	managing	plugins	installation	and	updates.	

You	can	access	this	UI	from	the	dashboard	simply	by	pressing	the	l	key,	which	is	labelled	in	
the	dashboard	as	Lazy.	The	label	should	probably	be	Lazy PLugin Manager	to	make	it	a	
bit	more	clear,	but	now	you	know	what	Lazy	means	so	you	won’t	forget.	

If	you	are	not	actively	displaying	the	dashboard,	you	can	show	the	plugin	manager	at	any	
time	by	entering	Space	mode.	We’ll	cover	Space	mode	in	detail	in	the	next	chapter,	but	for	
now:	First	make	sure	you	are	in	Normal	mode	by	checking	the	lower	left	corner	of	the	
active	window.	If	not,	press	Esc	to	enter	Normal	mode.	Then	press	Space	to	enter	space	
mode,	followed	by	l	to	bring	up	the	lazy.nvim	plugin	manager.	

(Don’t	worry,	those	keybindings	will	all	be	second	nature	within	a	week.)	

The	Lazy	plugin	manager	interface	looks	like	this:	

	

The	window	that	has	popped	up	is	called	a	Qloating	window.	You’ll	see	these	in	a	few	
different	situations,	usually	when	there	is	interactive	data	that	you	need	to	work	with	(like	
a	web	modal).	This	particular	Qloating	window	comes	with	its	own	set	of	keybindings.	The	
keybindings	are	listed	across	the	top,	and	pay	attention	to	the	fact	that	all	of	them	are	
capitalized,	so	you	need	to	use	the	Shift	key	when	invoking	them.	

Realistically,	the	only	keybinding	I	use	on	a	regular	basis	is	S,	for	Sync.	This	is	the	
equivalent	of	running	install,	clean,	and	update	in	one	single	action,	so	it	has	the	effect	of	
guaranteeing	that	the	versions	of	plugins	that	are	actually	installed	are	exactly	consistent	
with	the	ones	speciQied	in	the	LazyVim	conQiguration.	

So	when	the	“Plugin	updates	available”	notiQication	pops	up,	just	press	Space-l	and	then	S	
and	wait	for	the	sync	to	complete.	Then	press	q	to	close	the	Lazy.nvim	Plugin	mode	and	
Qloating	window	and	return	to	what	you	were	doing.	

A Note on Managing Dot Files

If	you	work	on	multiple	different	computers,	you’ll	quickly	Qind	that	you	don’t	want	to	set	
up	your	LazyVim	conQiguration	separately	on	all	of	them.	LazyVim	does	not	have	the	
equivalent	of	VS	Code’s	“settings	sync”,	though	such	plugins	exist.	

An	alternative	I	recommend	instead	is	to	store	your	conQig	Qiles	in	a	git	repository.	You’ll	
probably	Qind	there	are	a	few	other	Qiles	you	want	to	keep	in	there	such	as	
your	.gitconfig	and	.zshrc	/	.bashrc	/	.config/fish/config.fish.	If	you	use	
GitHub	Codespaces,	you	may	already	manage	some	dot	Qiles	with	git.	

If	not,	my	personal	recommendation	is	to	follow	the	advice	in	the	excellent	blog	article	
DotQiles:	Best	way	to	store	in	a	bare	git	repository	from	the	Atlassian	blog.	

Before	distributions	like	LazyVim	came	along,	it	was	very	common	for	people	to	store	their	
Vim	conQiguration	in	a	public	repository,	and	borrow	ideas	from	each	other.	This	practice	is	
not	quite	dead,	and	you	can	Qind	my	own	dot	Qiles	on	GitHub	in	the	dusty-phillips/dotQiles	
repository.	

Summary

In	this	chapter,	we	brieQly	discussed	the	history	of	Vim,	Neovim,	and	LazyVim,	and	why	they	
are	still	relevant	today.	Then	we	covered	the	importance	of	GPU	accelerated	terminals	and	
Nerd	Fonts.	

We	Qigured	out	how	to	install	Neovim	and	its	dependencies	under	whichever	operating	
system(s)	you	use,	and	Qinally,	installed	LazyVim	from	its	starter	template.	

In	the	next	chapter,	we’ll	discuss	Vim’s	core	feature:	Modal	Editing,	and	dig	into	the	many	
things	you	can	do	with	your	keyboard	in	LazyVim.	

Chapter 2: What is Modal Edi/ng, Anyway?

Chapter	2:	What	is	Modal	Editing,	Anyway?	-	LazyVim	for	Ambitious	Developers	

As	you	may	have	guessed	from	the	letters	on	the	dashboard,	LazyVim	is	very	keyboard-
centric.	As	many	actions	as	possible	can	be	performed	without	moving	your	hands	between	
mouse	and	keyboard.	That’s	not	to	say	that	it’s	impossible	to	use	the	mouse.	You	can	click	
anywhere	in	the	editor,	interact	with	buttons	and	modals	when	they	pop	up,	use	the	scroll	

https://www.atlassian.com/git/tutorials/dotfiles
https://github.com/dusty-phillips/dotfiles

wheel	or	gestures	to	scroll,	and	resize	editor	panes	by	dragging	their	borders,	for	example.	
But	you	can	also	do	all	of	these	things	using	the	keyboard,	and	usually	more	efQiciently.	

More	importantly,	you	can	do	most	things	by	holding	at	most	two	keys,	and	usually	just	one.	
You	will	only	rarely	have	to	contort	your	hands	into	painful	(and	dangerous)	positions	to	
Control + Shift + Alt + <some key>.	

How	does	Vim	do	this?	Modal	editing.	

Introduc/on to Modal Edi/ng

“Modes”	in	LazyVim	simply	mean	that	different	keystrokes	mean	different	things	depending	
on	which	mode	is	currently	active.	For	example,	when	you	start	the	editor	up,	you	are	in	a	
“Dashboard	Mode”,	and	the	most	common	interpretation	of	keystrokes	in	that	mode	are	
listed	right	there	on	the	dashboard.	This	discoverability	of	keybindings	in	a	given	mode	is	a	
common	theme	in	LazyVim,	and	a	huge	improvement	over	the	opaque	default	behaviour	of	
Neovim	itself.	

To	see	what	I	mean,	press	the	spacebar	to	enter	“Space	mode”.	Space	mode	is	a	LazyVim	
concept;	it	does	not	exist	in	a	raw	Neovim	installation	(though	you	can	install	various	
plugins	to	recreate	the	effect	if	you	want	Space	Mode	without	LazyVim).	

Entering	Space	mode	pops	up	a	menu	along	the	bottom	of	your	screen.	If	you	have	the	
dashboard	open,	it	will	look	something	like	this	(my	menu	contains	some	customizations,	
so	yours	won’t	be	identical):	

	

That’s	a	big	menu.	The	important	thing	to	focus	on	right	now	is	the	f	key,	which	we	will	use	
to	understand	modal	editing.	

If	you	are	in	Dashboard	mode	and	press	the	f	key,	you	will	open	the	Find file	dialog	
using	a	plugin	we’ll	discuss	later	called	Telescope.	However,	now	that	you	are	in	Space	
mode,	if	you	press	the	f	key,	it	will	open	the	file/find	Space	mode	submenu.	

This	is	the	crux	of	what	modal	editing	means:	The	behaviour	of	a	given	key	depends	on	the	
current	mode.	As	indicated	by	the	line	at	the	bottom	of	the	Space	mode	menu,	you	can	press	
the	Escape	key	to	exit	Space	mode	and	return	to	the	dashboard.	Go	ahead	and	do	that.	

Now	you’re	back	in	Dashboard	mode,	and	you	can	press	the	n	key	to	create	a	new,	empty	
buffer.	

Pay	close	attention	to	the	lower	left	corner	of	that	buffer,	where	you’ll	see	the	word	INSERT	
in	green:	

	

Remember	how	I	said	Space	mode	is	a	LazyVim	concept?	Insert	mode	is	a	Vi	concept,	that	
the	successors	Vim,	then	Neovim,	and	now	LazyVim	have	all	inherited.	In	Insert	mode,	the	
vast	majority	of	keystrokes	do	what	you	would	expect	in	any	editor:	they	insert	text.	So	you	
can	touch	type	as	with	any	other	editor!	

You	can	access	some	keyboard	shortcuts	in	Insert	mode	using	Control	and	Alt	keys.	For	
example,	you	can	hit	Control-r	to	enter	the	“Registers”	mini-mode,	which	pops	up	a	list	of	
“registers”	you	can	paste	from.	We’ll	cover	registers	in	detail	later.	For	now,	it	is	enough	to	
know	that	Control-r	followed	by	the	plus	key	(i.e.	Shift-=)	will	paste	text	from	the	
clipboard	in	Insert	mode.	

However,	you	will	much	more	often	change	to	Normal	mode	to	perform	any	non-text-entry	
operations,	including	pasting	text.	

To	get	into	Normal	mode	from	Insert	mode,	hit	the	Escape	key.	The	cursor	will	change	from	
a	bar	to	a	block	and	the	indicator	in	the	lower	left	corner	will	change	to	a	blue	NORMAL:	

	

In	Normal	mode,	pressing	various	keyboard	characters	will	not	insert	text	like	it	does	in	
Insert	mode.	For	example,	pressing	p,	rather	than	inserting	a	literal	p	character	into	the	
document,	will	instead	paste	from	the	system	clipboard.	

Vim	and	Neovim	aren’t	very	discoverable,	but	they	ARE	extremely	memorable.	As	often	as	
possible,	the	keyboard	shortcuts	to	perform	an	action	start	with	a	letter	that	makes	sense	
for	the	action	being	performed.	You	might	think	p	stands	for	“paste”,	but	in	fact	the	concept	
has	been	around	for	longer	than	the	clipboard	mnemonic.	You	are	welcome	to	think	of	it	as	
“paste”	if	that’s	easier	for	you,	but	in	Vim	parlance,	it	actually	stands	for	“put”,	and	we’ll	use	
that	word	in	different	contexts	throughout	the	book.	

For	some	contrast,	the	Control-r	key	that	pops	up	the	list	of	registers	in	Insert	mode	does	
not	pop	up	a	list	of	registers	in	Normal	mode.	Instead,	Control-r	means	“redo”	(aka	undo	
an	undo).	In	order	to	enter	the	Registers	mini-mode	from	Normal	mode,	you	would	press	
the	"	(quote,	as	in	Shift-apostrophe)	key	instead.	

If	that	sounds	confusing,	don’t	worry.	Your	brain	and	muscle	memory	will	adapt	more	
quickly	than	you	expect	and	you’ll	always	understand	that	behaviours	in	Normal	mode	are	
not	the	same	as	in	insert	mode.	

To	be	honest,	I	hardly	ever	use	non-text-entry	commands	in	Insert	mode.	I	Qind	it	is	easier	
to	switch	back	to	Normal	mode	and	then	perform	the	command	from	normal	mode.	It	
doesn’t	usually	take	a	higher	number	of	keystrokes	to	do	so	and	I	don’t	have	to	hold	down	
multiple	keys	at	once.	

As	I	mentioned,	the	universal	key	to	exit	Insert	mode	and	return	to	Normal	mode	is	Escape.	
And	that	brings	us	to	an	important	point:	You	will	be	using	this	key	a	lot,	but	moving	your	
hands	from	the	home	row	to	the	Escape	key	in	the	upper	left	corner	and	back	again	is	
somewhat	inefQicient.	

There	are	a	few	common	workarounds	to	this	situation:	

• If	you	have	a	customizable	keyboard	you	can	put	the	escape	key	in	a	more	accessible	
location.	This	is	what	I	do.	I	have	a	Kinesis	Advantage	360,	and	I	remapped	the	keys	
so	that	escape	is	in	the	“thumb	key”	section	of	this	admittedly	bizarre	keyboard.	It’s	
as	easy	to	hit	as	enter,	space,	and	backspace,	other	keys	that	I	use	very	frequently.	

• Your	operating	system	is	probably	also	capable	of	remapping	keys.	A	lot	of	users	
replace	the	largely	useless	Capslock	with	the	Escape	key.	(If	you	ever	go	back	to	
the	keyboard	chaining	editors	descended	from	Emacs,	including	VS	Code:	For	these	
editors	it	can	be	more	comfortable	to	remap	Capslock	to	the	commonly-held	
Control	key,	especially	on	laptop	keyboards).	

• Neovim	itself	is	also	able	to	remap	keys.	We’ll	discuss	how	to	do	this	in	LazyVim	
later.	One	common	pattern	is	to	map	a	series	of	uncommon	keystrokes	that	you	
wouldn’t	likely	type	together	when	inserting	text	to	the	escape	key.	So	you	can	set	it	
up	to	map	something	like	jk,	jj	or	;;	in	Insert	mode	to	switch	to	normal	mode.	I’ve	
tried	this	and	don’t	care	for	it	as	it	introduces	a	timing	thing	when	you	hit	the	Qirst	

character	and	Neovim	is	waiting	to	see	if	you’re	going	to	type	a	command	or	let	text	
insertion	continue,	but	you	might	like	it.	

• The	Control-C	keyboard	combination	also	works	to	exit	Insert	mode,	with	no	
remapping	required.	I	don’t	like	this	because	it’s	two	keystrokes	and	on	my	Dvorak	
keyboard,	Control-C	is	harder	to	hit	than	on	a	qwerty	keyboard	where	C	is	on	the	
bottom	row	near	the	Control	key.	

Don’t	worry	about	actually	changing	it	for	now;	just	start	getting	used	to	using	Escape	
where	it	is	and	see	if	you	Qind	it	annoying.	

Once	you’re	in	Normal	mode,	you’ll	obviously	want	to	get	back	to	Insert	mode	to	enter	text	
at	some	point!	There	are	several	different	ways	to	do	this	that	we’ll	discuss	later.	As	a	taste,	
here	are	a	couple	of	the	most	common	ones:	

The	i	key	always	inserts	text	before	the	current	cursor	position.	This	means	that	you	could	
(very	clumsily)	move	your	cursor	left	by	pressing	i <Escape> i <Escape>	repeatedly.	
When	you	press	i,	you	insert	text	before	the	current	position,	and	then	escape	takes	you	
out	of	Insert	mode	at	that	new	“before”	position.	

Commonly,	you	want	to	enter	Insert	mode	after	the	current	cursor	position.	To	do	that,	use	
the	a	key	instead	(mnemonic:	i	=	Insert	Before,	a	=	Append,	although	I	usually	think	of	it	as	
After).	

You’ll	Qind	that	you	need	to	alternate	between	these	a	lot	as	you	are	navigating	a	document	
because	the	various	navigation	commands	we’ll	cover	later	will	often	put	you	just	before	or	
just	after	the	position	you	need	to	insert	at.	So	it’s	important	to	remember	both	of	them.	

Two	other	very	common	operations	are	to	insert	at	the	very	beginning	or	the	very	end	of	
the	current	line.	You	could	use	navigation	commands	to	move	to	the	start	or	end	and	then	
use	i	and	a,	but	it’s	easier	to	use	the	commands	I	and	A	instead	(The	difference	is	that	they	
are	capitalized,	so	you	need	the	Shift	key	with	them).	

A note on Keybinding Mnemonics

It	is	very	common	for	related	keybindings	like	these	to	be	assigned	to	the	lowercase	and	
uppercase	versions	of	the	same	key.	You	will	often	Qind	that	the	lower	case	version	means	
do something	and	the	uppercase	version	means	either	do the same thing only
BIGGER	or	do the opposite thing,	depending	on	the	situation.	In	this	case,	i	and	a	
mean	“insert	one	character	before	or	after	the	cursor”	and	I	and	A	are	“insert	before	or	
after	the	cursor,	only	BIGGER	(i.e.	at	the	beginning	or	end	of	the	line)”.	

To	illustrate	the	“do	the	opposite	thing”	situation,	consider	the	o	and	(shifted)	O	keys,	which	
are	two	new	ways	to	get	into	Insert	mode.	

The	o	key	is	used	to	enter	Insert	mode	on	a	new	line	below	the	current	one.	I’ve	heard	the	
mnemonic	as	“Open	a	new	line	above/below”	to	help	you	remember	the	otherwise	not	
terribly	memorable	o	command.	And	in	the	classic	“do	the	opposite	thing”	scenario,	the	
shifted	O	means	“create	a	new	line	above	the	current	one	and	enter	Insert	mode	on	it”.	

Let’s	discuss	one	Qinal	very	useful	command	that	takes	two	keystrokes,	one	after	the	other:	
gi.	That	is	a	single	press	and	release	of	g	followed	by	i.	

This	effectively	means	“Go	to	the	last	place	you	entered	insert	mode,	and	enter	Insert	mode	
again”.	In	this	case,	the	g	key	is	actually	switching	to	a	new	mini-mode	I	call	“Go	To”	mode,	
though	not	all	the	commands	accessible	from	it	are	strictly	related	to	going	places.	You	can	
see	the	entire	list	of	commands	available	in	“Go	To”	mode	by	pressing	the	g	key	in	Normal	
mode	and	waiting	for	the	menu	to	pop	up	at	the	bottom	of	the	window:	

	

We’ll	cover	most	of	them	later,	but	notice	that	the	i	key	is	in	there	labelled	Move to the
last insertion and INSERT.	So	if	you	forget	how	to	go	to	the	last	insertion	point,	you	
can	enter	Go	To	mode	and	scan	the	menu	to	Qind	the	i	again.	

Try	all	of	those	commands	(a,	i,	o,	A,	I,	O,	and	gi)	repeatedly,	entering	some	text	and	
pressing	Escape	to	return	to	Normal	mode.	Then	try	it	again.	Move	your	cursor	around	the	
text	using	the	mouse	(we’ll	get	to	keyboard	navigation	soon,	I	promise),	and	try	using	the	
commands	again	to	see	how	they	behave	in	new	locations.	

Get	really	comfortable	with	switching	between	Normal	and	Insert	mode.	You	might	think	
you’ll	spend	most	of	your	time	in	Insert	mode,	but	the	truth	is	code	is	edited	far	more	often	
than	it	is	written	afresh,	and	you’ll	be	alternating	between	them	constantly.	

Visual Mode

The	other	major	mode	that	LazyVim	inherits	from	its	ancestors	is	“Visual”	mode.	Visual	
mode	is	used	to	select	text.	In	general,	you	can	enter	Visual	mode	and	then	use	many	of	the	
same	navigation	keys	you	would	use	in	Normal	mode	to	move	your	cursor	around.	Since	we	
haven’t	covered	those	navigation	keystrokes	yet,	I’m	going	to	defer	a	detailed	discussion	of	
Visual	Mode	until	we	have	the	necessary	foundation.	

Command Mode

Command	mode	is	different	from	the	other	modes	we’ve	seen,	which	were	mostly	either	
submenus	or	editor-level	major	modes.	You	can	get	into	command	mode	from	Normal	
mode	by	using	the	:	(i.e.	Shift-<semicolon>)	command.	In	LazyVim,	this	will	pop	up	a	
little	widget	where	you	can	type	what	is	known	as	an	“Ex	Command.”	This	name	comes	
from	vi’s	predecessor,	ex,	which	hasn’t	really	been	used	(other	than	as	part	of	Vim)	in	
decades.	

Essentially,	you	can	enter	a	wide	variety	of	commands	into	this	widget	and	expect	certain	
behaviours	to	happen	as	a	result.	It	is	actually	more	similar	to	the	VS	Code	command	
palette	than	anything	else,	though	it	is	a	quite	different	beast.	

You	already	know	one	ex	command	from	the	previous	chapter!	Remember	
<Escape><Colon>q!<Enter>	the	command	to	exit	the	editor?	You	now	know	that	the	
Escape	is	to	enter	Normal	mode	from	whatever	mode	you	are	in.	The	colon	is	used	to	
switch	to	Command	mode,	and	the	q	is	short	for	quit	(You	could	type	the	full	word	quit	if	
you	didn’t	feel	the	need	to	conserve	keystrokes).	The	exclamation	point	says	“without	
saving”	and	the	Enter	means	“submit	the	ex	command”.	

As	another	example,	let’s	consider	the	write	ex	command.	Type	:	followed	by	write
myfile.txt	like	this:	

	

Press	Enter	to	conQirm	and	execute	the	command.	

Note:	Most	commands	can	be	shortened	to	their	shortest	unique	common	preQix.	
You	can	type	:w myfile.txt	instead	of	:write myfile.txt.	The	most	popular	
commands	even	have	special	combined	commands,	so	:wq	will	save	and	exit,	
although	you’ll	probably	prefer	:x	as	it’s	even	shorter.	

Command	mode	is	kind	of	weird	because	it’s	kind	of	like	an	Insert	mode	in	the	sense	that	
you	can	type	text	into	it,	and	some	of	the	keybindings	that	work	in	Insert	mode	also	work	in	
command	mode	(including	Control-r	to	paste	from	a	register).	But	other	keybindings	
work	differently	in	command	mode.	The	most	important	one	is	the	Tab	key,	which	will	do	a	
sort	of	“tab	completion”	on	the	command.	For	example,	:q<Tab>	pops	up	a	menu	like	this:	

	

This	damn	completion	menu	is	surprisingly	unintuitive	to	navigate.	You’re	probably	going	
to	want	to	bookmark	this	section	or	take	some	notes	or	something	until	you	get	used	to	it!	

First,	if	you	want	to	select	a	different	entry	in	the	menu,	you	would	surely	think	you	can	use	
the	arrow	keys.	Which	you	can,	but	it’s	a	mind-mess	because	you	need	to	use	Left	and	
Right	to	move	the	cursor	Up	and	Down.	I	know!	WTF,	right?	

This	is	mostly	because	the	menu	looks	different	in	LazyVim	than	it	did	in	the	original	Vim,	
but	the	keys	haven’t	been	remapped.	So	instead,	I	suggest	using	Tab	and	Shift-Tab	to	
select	different	entries	from	the	menu.	It’s	easier	to	remember	and	much	easier	on	the	
muscle	memory:	Tab	once	to	show	the	menu,	tab	again	to	cycle	through	the	menu.	

Second,	there	is	some	nuance	around	con4irming	one	of	those	menu	entries.	In	the	above	
example,	you	can	just	press	Enter	to	conQirm	the	selection	and	execute	it.	However,	there	
are	often	cases	where	you	want	to	conQirm	the	selection	and	then	continue	editing	the	
command.	An	excellent	example	is	the	:e	or	:edit	command.	

This	command	is	used	to	open	a	Qile	on	your	Qilesystem,	but	you	have	to	type	the	entire	path	
to	the	Qile.	For	example,	if	you	have	the	following	directory	structure:	

.	
└── foo	
 ├── bar	
 └── baz	
 │ └── fizz.txt	

…and	you	have	Neovim	open,	you	would	have	to	type	the	following	to	open	the	fizz.txt	
Qile:	

:e foo/baz/fizz.txt	

That’s	a	lot	of	typing	if	you	need	to	get	to	deeply	nested	directories.	Luckily,	you	can	use	tab	
completion	for	this.	You	can	type	:e f<tab>b<tab><tab><tab>	to	get	foo/baz,	but	at	
this	point	the	menu	is	still	open:	

	

If	you	press	Enter	now,	it’s	going	to	open	the	baz	folder	instead	of	just	conQirming	the	
selection,	which	is	not	what	you	want.	And	if	you	pres	Tab	again	it	will	cycle	through	the	
menu	some	more.	

Instead,	you	have	a	couple	of	options.	The	Down	arrow	key	will	move	“into”	the	selected	
directory,	allowing	you	to	tab	through	the	Qiles	inside	it.	Alternatively,	use	the	Control-y	(y	
for	“yes”)	key	combination.	This	will	conQirm	the	baz	selection	and	close	the	menu	but	
leave	you	in	command	mode.	Now	you	can	press	tab	again	to	complete	the	fizz.txt	
portion	of	the	command.	

It	is	possible	to	remap	these	keys	to	be	more	like	other	software,	and	I	honestly	think	this	is	
one	thing	LazyVim	should	do	by	default.	I	haven’t	found	a	combination	that	I	like,	though,	so	
I	just	stick	with	the	default	keybindings.	

You	probably	won’t	spend	a	lot	of	time	in	command	mode.	There	are	easier	ways	to	open	
Qiles	in	LazyVim,	for	example,	as	well	as	to	quit	the	editor.	And	if	you	need	to	do	something	
more	complex	with	command	history,	there	is	a	special	window	you	can	use	to	edit	
commands	with	Insert	and	Normal	mode	that	we	will	cover	later.	

For	now,	remember	<Tab>	and	Control-y	and	you’ll	be	able	to	navigate	the	Command	
menu	when	you	need	to.	There	are	other	keybindings	you	can	use	to	edit	commands,	but	
unless	you	Qind	yourself	annoyed	by	certain	repeated	tasks,	I	wouldn’t	worry	about	them.	

The	most	important	command,	by	the	way,	is	:help.	Vim	was	created	before	folks	had	
ready	access	to	the	Internet,	so	it	has	a	tradition	of	shipping	all	of	its	documentation	with	
the	editor.	So	for	example,	if	you	can’t	remember	the	keyboard	shortcut	to	put	text,	
try	:help put.	Or,	if	you	want	to	know	what	the	Control-R	keyboard	shortcut	does,	
try	:help CTRL-R.	Of	course,	the	Vim	help	documents	have	been	indexed	by	your	favourite	
search	engines	and	AI	chat	bots,	so	you	can	go	all	new-school	and	ask	them	if	you	prefer.	

Summary

In	this	chapter,	we	became	comfortable	with	the	concept	of	modal	editing	and	the	most	
important	LazyVim	modes.	There	are	other	mini-modes	and	one	major	mode	that	will	come	
up	as	we	progress	through	this	book,	but	becoming	comfortable	with	Normal,	Insert,	and	
Command	mode	(and	how	to	switch	between	them)	will	take	you	a	long	way	on	your	
LazyVim	journey.	

In	the	next	chapter,	we’ll	learn	a	whole	bunch	of	different	ways	to	move	the	cursor	around	
inside	a	document.	

Chapter 3: Ge6ng Around

Chapter	3:	Getting	Around	-	LazyVim	for	Ambitious	Developers	

Software	developers	spend	far	more	time	editing	code	than	we	do	writing	it.	We’re	always	
debugging,	adding	features,	and	refactoring.	

Indeed,	the	most	common	thing	I	ever	do	is	add	a	print/printf/Println/console.log	at	some	
speciQic	line	in	the	codebase.	

If	you	are	coming	from	the	more	common	word	processing	or	text	editing	ecosystems,	
navigating	code	is	the	thing	that	is	most	different	in	Vim’s	modal	paradigm.	Even	if	you’re	
used	to	Vim,	some	of	the	plugins	LazyVim	ships	by	default	suggest	different	methods	of	
code	navigation	from	the	old	Vim	standbys.	

In	VS	Code,	often	the	quickest	way	to	get	from	one	point	in	the	code	to	another	is	to	use	the	
mouse.	For	minor	movements,	the	arrow	keys	work	well,	and	they	can	be	combined	with	
Control,	Alt,	or	Cmd/Win	to	move	in	larger	increments	such	as	by	words,	paragraphs,	or	
to	the	beginning	or	end	of	the	line.	There	are	numerous	other	keyboard	shortcuts	to	make	
getting	around	easier,	and	the	Language	Server	support	allows	for	easy	semantic	code	
navigation	such	as	“Go	to	DeQinition”	and	“Go	to	Symbol”.	

Vim	also	supports	mouse	navigation,	but	you’ll	likely	reach	for	it	less	often	once	you	train	
up	on	the	navigation	keymappings.	LazyVim	has	keybindings	for	the	same	Language	Server	
Protocol	features	that	VS	Code	has,	and	they	are	often	more	accessible.	The	big	difference	
with	Vim	is	the	entire	keyboard’s	worth	of	navigation	commands	that	are	opened	up	to	you	
when	your	editor	is	in	Normal	mode.	

Seeking Text

LazyVim	ships	with	a	plugin	called	flash.nvim,	which	was	created	by	the	creator	of	
LazyVim	and	integrates	very	nicely	with	it.	

This	plugin	provides	a	code	navigation	mode	that	has	been	available	in	various	vim	plugins	
(starting	with	one	called	EasyMotion)	for	many	years,	and	has	historically	been	quite	
controversial.	A	lot	of	long-time	Vim	users	think	it	breaks	the	Vim	paradigm.	I	won’t	go	into	
the	details	as	to	why,	but	I	will	acknowledge	that	this	was	true	in	older	iterations	of	the	
paradigm	and	is	much	less	true	in	modern	versions	such	as	flash.nvim.	

If	you	can	see	the	code	you	want	to	navigate	to	(i.e.	because	the	Qile	is	currently	open	and	
the	code	is	scrolled	into	view),	flash.nvim	is	almost	always	the	fastest	way	to	move	your	
cursor	there.	It	admittedly	takes	at	least	three	keystrokes,	but	those	three	keystrokes	
require	no	mental	math	or	incrementally	“moving	closer”	to	the	target	until	you	get	there,	
which	are	two	of	the	less	efQicient	problems	that	come	up	with	certain	other	Vim	navigation	
techniques	(as	well	as	in	non-modal	editing).	

To	invoke	flash,	press	the	s	key	in	Normal	mode.	My	mnemonic	for	s	is	“s	stands	for	seek”,	
although	I’ve	also	heard	it	referred	to	as	“sneak”	or	“search”	mode.	Searching	in	LazyVim	is	
a	different	behaviour	(it	doesn’t	care	if	the	text	is	currently	visible	or	not),	and	“sneaking”	
sounds	a	little	too	dishonest,	so	I	use	“Seek”.	

The	Qirst	thing	to	notice	when	you	press	s	is	that	the	text	fades	to	a	uniform	colour	and	
there’s	a	little	lightning	symbol	in	the	Mode	indicator	indicating	that	Flash	mode	is	active:	

	

Since	you	know	where	you	want	the	cursor	to	be,	your	eyes	are	probably	looking	right	at	it,	
and	you	know	exactly	what	character	is	at	that	location.	So	after	entering	seek	mode,	simply	
type	the	character	you	want	to	jump	to.	

For	example,	in	the	following	screenshot,	I	want	to	Qix	the	(intentional)	typo	in	the	heading	
of	this	section,	changing	Test	to	Text.	

	

I	have	hit	ss,	and	every	single	s	in	the	screenshot	has	turned	blue,	including	capitals.	There	
is	an	s	character	beside	the	Qlash	icon	in	the	status	bar	indicating	that	I	have	seeked	an	s.	

In	addition,	beside	(to	the	right)	of	all	the	s	characters	nearest	to	the	cursor	(which	is	in	the	
bottom	paragraph)	have	a	green	label	beside	them.	If	I	wanted	to	jump	to	any	of	those	s	
characters,	I	would	just	have	to	type	that	label	and	boom,	I’d	be	there.	

However,	the	character	I	want	to	hit	is	too	far	away	to	have	a	unique	label,	as	there	are	a	lot	
of	s	characters	in	my	text.	No	matter!	I	just	have	to	type	the	character	to	the	right	of	the	
target	s	character,	which	is	a	t.	Now	my	screen	looks	like	this:	

	

Now,	all	instances	of	st	in	the	Qile	are	highlighted	in	blue,	and	since	there	aren’t	as	many	st	
as	s,	all	of	those	instances	have	a	label	beside	them.	The	text	I	want	to	move	to	is	labelled	
with	a	p,	so	I	press	p	and	my	cursor	is	moved	to	the	s	character	I	wanted	to	change.	Now	I	
can	type	rx	to	replace	the	s	with	an	x	(we’ll	discuss	editing	code	in	a	later	chapter,	but	now	
you’ve	had	a	taste	of	it).	

If	you	have	multiple	Qiles	open	in	splits	(which	we’ll	also	discuss	in	detail	later),	Seek	mode	
can	be	used	to	move	your	cursor	anywhere	on	the	screen,	not	just	in	the	currently	active	Qile.	

Seek	mode	does	have	drawbacks	however,	at	least	the	way	flash.nvim	implements	it.	
There	are	some	characters	you	can’t	move	to	directly	because	you	run	out	of	text	to	search	
for	before	a	labelled	match	is	in	that	location.	For	me	this	happens	most	often	when	I	want	
to	edit	the	end	of	a	line.	If	I	type	sn	because	I	want	to	edit	a	line	that	has	n	as	the	last	
character,	but	there	are	a	bunch	of	n	characters	closer	to	my	cursor	than	the	one	I	want	to	
move	to,	Qlash	may	not	label	the	n	I	want	to	move	to,	and	it	won’t	accept	a	carriage	return	as	
a	“next	character”	input.	

For	this	reason,	I	don’t	seek	near	ends	of	lines.	Instead,	I’ll	seek	to	a	word	somewhere	in	the	
middle	of	the	same	line	and	then	use	A	which,	as	you	may	recall,	will	put	me	in	Insert	mode	
at	the	end	of	the	line.	Alternatively,	if	I	don’t	want	to	enter	insert	mode,	I	will	use	the	$	
symbol	(Shift+4),	which	is	the	Normal	mode	command	for	“Move	cursor	to	end	of	current	
line”.	

Scrolling the screen

Seek	mode	only	works	if	the	text	you	want	to	jump	to	is	visible	on	the	screen.	You	can’t	label	
something	you	can’t	see!	Often,	this	means	you	want	to	use	search	or	one	of	the	larger	or	
more	speciQic	motions	discussed	later,	but	there	are	also	a	few	keybindings	you	can	use	to	
scroll	the	screen	so	you	can	see	your	target	and	jump	to	it.	

These	keybindings	are	a	little	unusual	by	Vim	standards	because	they	mostly	involve	using	
the	control	key.	How	anti-modal!	In	my	experience,	these	keybindings	don’t	actually	get	a	
ton	of	use.	Indeed	I’ve	forgotten	some	of	them	and	had	to	look	them	up	to	write	this	
chapter.	

The	scrolling	keys	I	use	the	most	are	deQinitely	Control-d	and	Control-u,	where	the	
mnemonic	is	down	and	up.	They	scroll	the	window	by	half	a	screen’s	worth	of	text.	The	
cursor	stays	in	the	same	spot	relative	to	the	window,	which	means	that	it	is	moved	up	or	
down	by	half	a	screen’s	worth	of	text	relative	to	the	document.	

If	you	need	to	move	even	further,	you	can	use	the	Control-f	and	Control-b	keybindings,	
which	move	by	a	full	page	of	text.	I	don’t	like	these	ones	because	I	never	quite	know	where	
the	cursor	is	going	to	end	up	and	I	become	disoriented.	But	it	can	be	handy	if	you	need	to	
scroll	something	into	view	quickly	to	use	Seek	mode	on	it.	Unlike	Control-d	and	
Control-u,	Control-f	and	Control-b	can	be	preQixed	with	a	count,	so	you	can	type	
5<Control-f>	if	you	need	to	scroll	ahead	by	5	pages.	

I	have	no	idea	why	the	keys	Control-y	and	Control-e	where	chosen	to	scroll	the	window	
by	one	line	at	a	time.	I	never	use	them.	These	keybindings	accept	a	count,	so	if	you	can	
remember	them,	they	are	useful	for	subtle	repositioning	of	the	text.	The	main	advantage	of	
these	keybindings	is	that	they	don’t	move	the	cursor	unless	it	would	scroll	off	the	screen,	so	
if	you	are	working	on	a	line	and	need	more	visibility	but	don’t	want	to	move	the	cursor,	you	
could	use	Control-y	and	Control-e	to	do	it.	

The	reason	I	don’t	use	these	keys	(other	than	lack	of	a	decent	mnemonic)	is	that	I	prefer	to	
do	relative	cursor	positioning	using	z	mode.	

Z Mode

The	z	menu	is	kind	an	of	an	eclectic	mix	of	cursor	positioning,	code	folding,	and	random	
sub-menus,	as	you	can	see	by	pressing	the	z	key	while	in	normal	mode:	

	

If	that	looks	like	a	big	menu,	you	don’t	know	the	half	of	it!	There	are	a	ton	of	other	z-mode	
keybindings	that	are	obscure	enough	to	not	deserve	mention	in	the	menu!	I’ll	cover	the	
three	most	useful	scrolling	related	ones	here	and	we’ll	discuss	others	later.	

The	relative	cursor	keybindings	I	use	exclusively	are	zt,	zb,	and	zz.	These	move	the	line	
that	the	cursor	is	currently	on	to	the	top,	bottom,	or	middle	of	the	screen,	respectively.	
When	moving	to	the	top	or	bottom	it	will	leave	a	few	lines	of	context	above	or	below	the	
cursor.	

There	are	others	that	will	also	move	the	cursor	to	the	Qirst	column	of	the	window,	but	
instead	of	memorizing	those	shortcuts,	I	recommend	using	zt0,	zb0,	and	zz0	instead.	As	
we’ll	discuss	later,	the	0	command	just	means	“Go	to	the	start	of	the	line”.	You	can	also	use	
home	if	your	keyboard	has	a	home	key,	but	0	is	easier	to	hit	on	many	keyboards.	

You	can	Qind	other	scrolling	keybindings	in	the	Neovim	documentation	by	typing	:help
scrolling,	but	the	ones	I	just	mentioned	will	probably	more	than	cover	your	needs	as	you	
learn	far	more	nuanced	methods	of	navigating	code.	

The first rule of Vim

So	there	is	a	holy	rule	in	Vim	that	I	constantly	break	for	valid	reasons.	Unless	you	are	the	
very	strange	combination	of	weird	that	I	am,	you	probably	should	not	break	it	quite	so	
often:	

Never	use	the	arrow	keys	to	move	the	cursor.	

The	background	behind	this	rule	is	that	it	takes	a	tenth	of	a	second	or	so	to	move	your	hand	
to	the	arrow	keys	on	most	keyboards,	and	another	tenth	of	a	second	to	move	it	back	to	the	
home	row.	I’m	not	convinced	these	tenths	of	a	second	add	up	to	an	appreciable	amount	of	
time,	even	considering	the	millions	of	characters	I	have	typed	in	my	lifetime.	(Yes,	millions.	I	
did	the	math	once).	

But	I	do	think	the	arrow	keys	on	most	keyboards	can	do	nasty	things	to	the	long	term	
health	of	your	hands,	and	honestly,	the	more	you	get	used	to	the	alternative	Vim	
keybindings,	the	more	you’ll	prefer	to	use	them.	

The	Vim	keybindings	for	arrow	keys	seem	rather	unintuitive	when	you	Qirst	look	at	them:	h,	
j,	k,	and	l.	These	map	to	the	directions,	left,	down,	up,	and	right.	If	it	seems	weird	that	l	
means	“right”	instead	of	left,	or	you’re	wondering	why	they	skipped	i	since	that	appears	
to	be	an	alphabetic	sequence,	look	at	your	keyboard.	

If	you	are	an	English-speaker	with	a	standard	Qwerty	keyboard,	the	letters	h,	j,	k,	and	l	are	
on	the	home	row	under	your	right	hand,	in	that	order,	and	are	therefore	the	easiest	keys	to	
hit	on	the	entire	keyboard.	

Open	a	largish	Qile	in	Neovim	(you	can	use	:e path/to/filename)	and	experiment	with	
moving	the	cursor	left,	right,	up	and	down	using	the	home	row	keys.	While	you	do	that,	I’ll	
tell	you	why	I	don’t	use	them	because	I’m	triply	abnormal.	

First,	I’m	left	handed,	so	the	right	hand	home	row	is	slightly	less	accessible	feeling.	Second,	
I’ve	been	a	Dvorak	user	for	two	decades.	The	j,	k,	and	l	keys	are	not	on	my	home	row.	
Third,	I	use	a	Kinesis	Advantage	360	keyboard,	which,	among	other	bizarre	layout	features,	
places	the	arrow	keys	within	reach	of	my	Qingers	so	I	don’t	have	to	move	my	hand	to	hit	
them.	

By	a	strange	twist	of	fate,	these	weirdnesses	kind	of	cancel	each	other	out.	The	j	and	k	keys	
happen	to	be	directly	above	the	left	and	right	arrow	keys	under	my	dominant	left	hand.	So	
that’s	what	I	use	for	navigation:	Left	Right,	j	k.	If	you	are	less	weird	than	me,	you	should	
probably	use	the	right-hand	home	row	keys	the	way	Vim	was	designed.	

Vim,	Neovim,	and	LazyVim	are	all	really	good	at	reusing	motions,	so	you	will	Qind	that	h,	j,	
k,	and	l	are	used	for	a	lot	of	different	navigation	sequences	as	you	progress	through	this	
book.	Take	enough	time	to	really	get	used	to	them.	But	recognize	that	if	you	ever	have	to	
push	these	keys	more	than	twice	in	succession	to	move	the	cursor,	you’re	wasting	
keystrokes.	

Coun/ng

The	vast	majority	of	commands	in	Vim	can	be	preQixed	with	a	count	to	repeat	the	motion	
multiple	times.	The	count	is	typically	entered	as	a	sequence	of	digits	before	the	command	
you	want	to	repeat.	

So,	for	example,	to	move	the	cursor	up	15	lines,	you	would	enter	normal	mode	and	hit	the	
keys	15k.	To	move	it	Qive	characters	to	the	right,	use	5l.	

This	is	why	LazyVim	has	such	weird	line	numbering	by	default.	Consider	the	following	
screenshot:	

	

My	cursor	in	this	screenshot	is	on	line	126,	which	is	highlighted	in	the	left	gutter.	It’s	also	is	
also	visible	in	the	lower	right	corner	of	my	window,	though	I	cropped	it	out	in	this	
screenshot.	But	directly	above	line	126	we	see	the	line	number	1,	and	directly	below	it	we	
also	see	the	line	number	1.	

Let’s	say	I	want	to	move	my	cursor	to	the	Scrolling the screen	heading.	

This	line	has	the	number	5	beside	it,	so	I	don’t	have	to	count	lines	or	do	any	mental	
arithmetic	to	Qigure	out	the	count	to	use	to	move	my	cursor.	I	just	type	5j	and	my	cursor	
moves	to	the	desired	line.	

Now	that	you	know	what	they	are	for,	I	suggest	leaving	relative	numbers	on	until	you	get	
used	to	them.	If	you	Qind	them	distracting	or	just	don’t	use	them,	you	can	change	to	normal	
line	numbers	by	editing	your	LazyVim	conQiguration.	Open	the	Qile	~/.config/nvim/lua/
config/options.lua,	which	should	have	been	created	for	you	by	LazyVim	but	currently	
won’t	have	anything	in	it	other	than	a	comment	describing	what	it	is	for.	

Tip:	You	can	use	the	Space	mode	command	<Space>fc	to	quickly	Qind	Qiles	in	the	
LazyVim	conQiguration	directory.	This	will	pop	up	one	of	the	Qile	pickers	that	we’ll	
discuss	in	detail	in	the	next	chapter.	Type	options	and	press	<Enter>	to	open	the	
Qile.	

To	disable	relative	Qile	numbers,	add	this	line	to	the	Qile	and	save	it:	

vim.opt.relativenumber = false	

Then	reopen	Neovim,	and	you	should	see	the	absolute	value	of	line	numbers	in	the	left	
column.	

Personally,	I	Qind	line	numbers	to	not	be	very	useful	and	I	don’t	like	wasting	valuable	screen	
width	on	displaying	those	characters.	As	has	become	a	running	theme,	I	recognize	that	I	am	
somewhat	odd!	But	if	you	also	want	to	disable	line	numbers	altogether,	you’ll	need	another	
line	in	options.lua:	

vim.opt.number = false	
vim.opt.relativenumber = false	

Find mode

If	you	need	to	move	your	cursor	to	a	position	that	is	relatively	close	to	its	current	position,	
you	may	want	to	use	LazyVim’s	Find	mode	instead	of	the	Seek	mode	we	described	earlier.	
The	default	Find	mode	in	Neovim	is	rather	limited,	but	the	flash.nvim	plugin	that	enables	
Seek	mode	makes	it	much	nicer	to	use.	

To	enter	Qind	mode,	press	the	f	key.	Like	Seek	mode,	a	portion	of	your	screen	will	dim,	
indicating	that	you	should	type	another	character,	and	after	you	do	so,	all	instances	of	that	
character	after	the	cursor	will	be	highlighted.	For	example,	fs	will	highlight	all	instances	of	
the	letter	s	after	the	current	cursor	position.	

This	is	where	the	similarities	between	Find	mode	and	Seek	mode	end,	however.	Instead	of	
showing	a	label,	the	cursor	immediately	jumps	forward	to	the	Qirst	matching	character	after	
the	cursor.	You’ll	also	notice	that	none	of	the	text	before	the	cursor	has	been	dimmed,	and	
that	none	of	the	matching	characters	in	the	lines	before	the	cursor	are	highlighted.	

Instead,	we	need	to	use	counts	to	jump	to	later	instances	of	the	character.	If	I	want	to	jump	
ahead	to	the	third	highlighted	s,	I	type	3f	and	my	cursor	will	move	there.	However,	if	you	
want	to	jump	to	a	much	later	s,	you	probably	don’t	want	to	individually	count	how	many	s	
keys	there	are.	Luckily,	after	you	use	a	count,	LazyVim	leaves	you	in	Qind	mode,	so	you	can	
just	guess	how	many	s	characters	there	are,	and	then	once	you	are	closer,	repeat	with	a	new	
count.	If	you	only	want	to	jump	ahead	by	one	s	character,	you	don’t	need	to	enter	a	count,	
just	press	f	by	itself	and	you’ll	move	ahead.	

If	you	miscounted	or	misguessed	and	jump	too	far,	don’t	worry!	You	can	take	advantage	of	
the	fact	that	(Shifted)	F	means	“Qind	backwards”,	and	can	also	be	counted.	So	if	you	need	to	
move	to	the	15th	highlighted	s,	it’s	totally	Qine	to	guess	18f,	realize	you’ve	gone	three	too	
far,	and	use	3F	to	jump	back	to	the	previous	character.	

Moreover,	if	you	know	that	the	character	you	are	looking	for	is	behind	or	above	your	cursor	
in	the	document,	you	can	enter	Find	mode	with	F	instead	of	f	in	the	Qirst	place.	This	will	
immediately	start	a	backwards	Qind	operation	instead	of	a	forward	one.	And	if	you	know	
right	off	the	bat	that	you	want	to	jump	back	or	ahead	by	three	instances	of	the	given	
character,	you	can	even	use	a	count	when	you	Qirst	enter	Qind	mode.	

There	is	also	a	subtle	variation	of	Find	mode	that	I	call	“To”	mode,	although	the	ofQicial	Vim	
mnemonic	is	actual	“’til”	mode.	You	enter	it	with	a	t	or	T	depending	on	what	direction	you	
want	to	go.	

“To”	mode	behaves	identically	to	Qind	mode	except	that	it	jumps	to	just	before	the	target	
character.	

You	might	think	that	To	mode	is	kind	of	redundant	because	you	could	fairly	easily	use	Qind	
mode	followed	by	a	single	h	to	move	the	cursor	left.	But	“To”	mode	is	extremely	useful	when	
you	are	combining	it	with	operations	to	edit	the	text,	which	we	will	discuss	later.	As	a	taste,	
if	you	use	the	command	d2ts,	it	will	delete	all	text	between	the	cursor	and	the	second	s	it	
encounters,	but	leave	that	s	alone.	This	is	much	easier	than	the	d2fsis<Escape>	that	
would	be	required	if	you	used	a	Qind	command	and	then	had	to	enter	Insert	mode	to	add	
the	s	back.	

Moving by Words

When	f	or	t	feels	too	big,	and	cursors	with	counts	feel	too	small,	you’ll	most	likely	want	to	
use	the	word	movement	commands.	In	other	editors	and	IDEs	you	might	be	used	to	getting	
this	functionality	by	holding	Control,	Alt,	or	Option	(depending	on	the	operating	system	
and	editor)	while	using	the	arrow	keys.	

Neovim	is	easier;	you	don’t	have	to	move	your	hands	to	the	arrow	key	section	of	the	
keyboard	and	you	don’t	have	to	hold	down	multiple	keys	at	once.	

Instead,	you	can	just	enter	Normal	mode	and	press	the	w	key	to	move	to	the	beginning	of	
the	next	word.	If	you	instead	want	to	move	to	the	end	of	the	current	word,	use	the	e	key.	If	
you	are	already	at	the	end	of	the	current	word,	e	will	go	to	the	end	of	the	next	word.	

This	is	useful	when	you	want	to	combine	it	with	counts:	If	you	need	to	move	to	the	end	of	
the	word	that	is	two	words	after	the	current	word,	press	3e.	This	is	the	same	as	pressing	e	
three	times,	which	would	move	to	the	end	of	the	current	word,	then	the	next	word,	and	
Qinally	to	the	end	of	the	word	you	want	to	hit.	w	can	also	be	preQixed	with	a	count	if	you	need	
to	move	to	the	beginning	of	a	word	that	is	a	certain	number	of	words	after	the	current	one.	

Use	the	b	key	if	you	want	to	move	backwards	instead.	This	will	move	you	to	the	beginning	
of	the	current	word,	or	if	you	are	already	at	the	beginning	of	the	word,	it	will	move	to	the	
beginning	of	the	previous	word.	As	usual,	use	a	count	to	move	to	the	beginning	of	even	
more	words.	

Surprisingly,	it	takes	a	bit	more	work	to	move	to	the	end	of	the	previous	word,	as	you	need	
to	press	two	keys:	g	followed	by	e.	The	mnemonic	for	this	is	“go	to	end	of	previous	word”.	In	
practice,	you’ll	Qind	that	you	hardly	ever	need	this	functionality	for	some	reason,	and	the	

honest	truth	is	I	usually	use	be	(b	to	move	to	beginning	of	previous	word,	then	e	to	go	to	
end	of	that	word)	to	move	to	the	end	of	the	previous	word.	If	you	do	use	ge,	however,	it	can	
be	combined	with	a	count	as	well.	You’ll	need	to	type	something	like	4ge,	depending	on	the	
count.	The	command	g4e	wouldn’t	do	anything	useful.	

Collectively,	you	may	occasionally	hear	the	w,	e,	and	b	commands	referred	as	the	“web”	
words.	It	just	means	“moving	by	words”.	These	are	probably	the	most	common	movements	
you	will	use,	more	than	individual	cursor	positions,	simply	because	most	editing	actions	
tend	to	involve	changing	or	deleting	a	word	or	sequence	of	words.	

Moving by Words, Only BIGGER

The	“shifted”	form	of	the	web	words	also	move	by	words,	but	the	deQinition	of	“word”	is	
subtly	different.	SpeciQically,	a	capital	W	will	move	to	just	after	the	next	whitespace	
character,	where	a	lowercase	w	will	use	other	forms	of	punctuation	to	delimit	a	word.	
Consider	a	method	call	on	an	object	that	looks	something	like	this	in	many	languages:	

myObj.methodName('foo', 'bar', 'baz');	

If	you	cursor	is	currently	at	the	beginning	of	that	line,	a	w	will	move	your	cursor	to	the	
period	on	the	line,	a	second	w	will	move	you	to	the	m,	and	subsequent	w	presses	will	stop	at	
the	paren	and	quotes	as	well.	

On	the	other	hand,	if	your	cursor	is	at	the	beginning	of	the	line,	a	W	will	move	you	all	the	
way	to	the	Qirst	quote	in	the	"bar"	argument,	since	that	is	where	the	Qirst	whitespace	
character	is.	

As	a	visualization,	here	are	all	the	stops	on	that	line	of	code	when	you	use	w	compared	to	
when	you	use	W:	

myObj.methodName("foo", "bar", "baz")	
-----ww---------w-w--w--ww--w--ww--w---->	
------------------------W------W-------->	

The	B,	E,	and	gE	motions	behave	similarly,	moving	in	the	appropriate	direction	by	
whitespace-delimited	words	instead	of	punctuation	ones.	

One	thing	that	is	kind	of	annoying	both	in	Vim	and	the	way	LazyVim	is	conQigured	is	that	
there’s	no	way	to	navigate	between	the	individual	words	of	CamelCaseWords	or	
snake_case_words.	You	can	use	fC	or	t_	and	similar	if	you	want	to,	but	I	will	later	show	
you	up	how	to	set	up	the	nvim-spider	plugin	that	makes	navigating	these	common	
programming	constructs	simpler.	

Line targets

Very	frequently,	you	need	to	move	to	the	beginning	or	end	of	the	line	you	are	currently	
editing.	Often	you	can	use	I	or	A	for	this	if	your	goal	is	to	move	to	that	location	and	enter	
insert	mode,	but	if	you	need	to	move	there	and	stay	in	Normal	mode	(e.g.	for	other	
purposes	such	as	to	delete	or	change	a	word)	you	can	use	the	^,	$,	and	0	commands.	

If	you	are	familiar	with	regular	expressions,	you	might	know	that	^	is	used	to	match	the	
start	of	text	or	start	of	the	line	and	that	$	is	used	to	match	the	end,	so	the	mnemonic	of	
using	these	two	keybindings	to	match	the	beginning	and	end	of	the	current	line	will	
hopefully	be	less	unmemorable	than	they	seem	at	Qirst.	

There	is	a	certain	lack	of	symmetry	between	the	two,	however.	The	$	(Shift-4)	command	
simply	means	“go	to	the	end	of	the	line”,	as	in	the	last	character	before	the	ending	newline,	
no	matter	what	that	character	is.	The	^	or	caret	(Shift-6)	means	“go	to	the	beginning	of	
the	text	on	this	line”.	The	“of	the	text”	there	is	important:	if	your	line	has	whitespace	at	the	
beginning	(e.g.	indentation),	the	^	caret	will	not	go	to	the	very	Qirst	column,	but	will	instead	
go	to	the	Qirst	non-whitespace	character.	

To	move	to	the	very	beginning	of	the	line,	use	the	0	key.	0	is	the	only	numeric	key	that	maps	
to	a	command	because	the	others	all	start	a	count.	But	it	wouldn’t	make	sense	to	start	a	
count	with	0,	so	we	get	to	use	it	for	“move	to	the	zeroth	column”.	

There	is	also	a	command	to	go	to	the	end	of	the	line	excluding	whitespace,	but	I	have	never	
used	it,	probably	because	I	usually	have	formatters	conQigured	to	trim	trailing	whitespace	
so	it	doesn’t	come	up.	

The	two	character	combination	g_	(g	underscore)	means	“go	to	the	last	non-blank	
character”.	I	guess	_	kind	of	looks	like	“not	a	space”,	so	it’s	kind	of	mnemonic?	I	include	it	to	
be	comprehensive,	but	you’ll	likely	not	use	it	much.	You	also	have	the	option	of	combining	
other	commands	you’ve	learned	so	you	don’t	have	to	memorize	this	one	off.	For	example,	
you	can	use	the	three	character	$ge	(combining	“end	of	line”	with	go	backwards	to	end	of	
word)	or	$be	to	move	to	the	last	non-blank	on	the	line.	You	have	options;	pick	the	one	that	
you	Qind	is	easiest	to	remember	or	type!	

Jumping to specific lines

If	you	compile	some	code	or	run	a	linter,	you	will	invariably	be	given	a	line	number	where	
the	error	occurred	(unless	the	compiler	is	particularly	useless).	

You	can	jump	to	a	speciQic	line	by	entering	the	line	number	as	a	count,	followed	by	(shifted)	
G.	So	100G	will	move	your	cursor	to	line	100.	Alternatively,	you	can	use	the	:100<Enter>	
ex	command.	

G	is	a	normal	command,	though,	so	you	can	issue	it	without	a	count,	in	which	case	the	G	
command	will	always	take	you	to	the	end	of	the	Qile.	

You	can	go	to	the	top	of	the	Qile	with	1G	if	you	want,	but	since	this	is	such	a	common	
operation,	you	can	instead	use	gg	(two	lower	case	gs).	The	mnemonic	for	g	in	all	cases	is	
“Go	to”,	and	there	are	a	lot	of	things	that	can	come	after	a	g	(:help g	will	introduce	you	to	
the	ones	I	don’t	cover,	although	be	aware	that	LazyVim	has	overridden	some	of	them).	

Since	the	most	common	place	you	are	likely	to	want	to	“go	to”	is	a	line	number,	the	easiest	
to	type	G	and	gg	commands	are	used	for	line	number	navigation.	

Jump History

All	this	jumping	around	can	make	you	feel	a	little	lost.	Luckily,	there	are	two	super-useful	
keybindings	for	going	back	to	places	you	previously	jumped.	

Control-o	is	the	non-modal	control-based	keybinding	that	I	use	most	often.	I	should	
honestly	bind	it	to	something	more	accessible,	I	use	it	so	much.	It	basically	means	“Go	to	the	
place	I	jumped	from”.	

This	is	super	handy	when	you’re	editing	code	deep	in	a	Qile	or	module	and	realize	you	need	
to	import	a	library	at	the	top	of	the	Qile.	You	can	use	gg	to	jump	to	the	top	of	the	Qile,	s	to	
seek	to	the	line	you	want	to	add	the	import	on,	and	then	enter	Insert	mode	to	add	the	
import.	Now	you	want	to	go	back	to	the	code	you	were	working	on	so	you	can	actually	use	
the	import.	Control-o	a	couple	times	will	take	you	there.	

Neovim	keeps	a	history	of	all	your	jumps,	so	you	can	jump	between	several	locations	
(perhaps	to	look	up	documentation	or	the	call	signature	for	a	function)	and	always	Qind	a	
way	back.	

If	you	jump	too	far,	you	can	use	the	Control-i	keybinding	to	jump	forward	in	history.	It’s	
just	the	opposite	of	Control-o.	I	don’t	know	why	i	and	o	were	chosen	for	these;	maybe	
because	they	are	side-by-side	on	a	Qwerty	keyboard?	They	are	used	commonly	enough	that	
once	you	learn	them,	you	won’t	forget.	

Summary

Navigating	code	is	a	huge	topic	in	Vim.	You’ve	already	learned	enough	commands	that	you	
can	navigate	a	Vim	window	more	efQiciently	than	most	non-modal	editors	can	dream	of.	But	
we’ve	actually	barely	scratched	the	surface,	and	we’ll	be	covering	a	bunch	of	even	more	
useful	code	navigation	commands	in	a	later	chapter.	

We	covered	the	LazyVim	Seek	mode	to	jump	anywhere	in	the	visible	window,	and	then	the	
scrolling	commands	to	make	sure	the	thing	you	want	to	jump	to	is	visible.	Then	we	covered	
moving	the	cursor	with	the	home	row	key	and	extended	them	with	counts.	

We	learned	how	Find	mode	differs	from	Seek	mode,	even	though	they	are	superQicially	
similar.	Then	we	covered	some	standard	keybindings	for	moving	by	words	and	to	key	
places	on	a	line	before	jumping	to	speciQic	lines.	We	wrapped	up	by	covering	how	to	
navigate	to	places	you	have	jumped	before.	

In	the	next	chapter,	we’ll	learn	more	about	opening	Qiles	and	navigating	the	Filesystem.	

Chapter 4: Opening Files

Chapter	4:	Opening	Files	-	LazyVim	for	Ambitious	Developers	

In	the	previous	chapter,	as	a	side-effect	of	learning	about	command	mode,	we	saw	how	to	
open	Qiles	the	old-fashioned	Vim	way,	using	the	:edit	command.	Another	old-school	
alternative	is	to	open	them	directly	from	the	terminal	shell	command	line,	using	nvim
filename.	

Both	of	these	are	occasionally	handy,	but	LazyVim	pre-conQigures	a	few	more	modern	ways	
of	navigating	and	opening	Qiles.	

Introducing File Pickers

LazyVim	ships	with	two	different	“picker”	plugins,	tools	for	selecting	items	from	a	list.	We’ll	
look	at	both	in	this	chapter	with	some	advice	on	which	to	choose.	They	look	a	bit	differently,	
but	can	be	used	interchangeably.	

By	default,	LazyVim	ships	with	the	Telescope	picker	enabled,	so	we’ll	cover	that	Qirst.	It	
provides	a	“picker”	interface	with	preview	and	fuzzy	search	capabilities.	If	you’ve	used	the	
command	menu	in	many	modern	editors	(or	even	Github	or	Slack),	you	may	know	what	I’m	
talking	about.	The	picker	itself	doesn’t	care	what	you	are	picking,	and	it	is	used	for	a	wide	
variety	of	tasks	built	into	LazyVim	or	as	third-party	plugins,	including	opening	Qiles,	
selecting	open	buffers,	project-wide	search,	and	more.	

The	most	common	picker	task	you	will	perform	is	to	open	a	Qile	using	fuzzy	search.	I	use	
this	command	dozens,	maybe	hundreds	of	times	per	day,	so	it’s	a	good	thing	it’s	got	a	really	
accessible	keybinding.	

The	Qile	picker	is	best	illustrated	while	working	in	a	code	repository	with	a	lot	of	Qiles.	So	
close	Neovim	with	Space q q	and	use	the	cd	command	in	your	terminal	to	change	to	the	
directory	of	a	project	you’ve	been	working	on	recently	(If	you	don’t	have	one	close	to	hand,	
clone	your	favourite	open	source	project	and	use	that	instead).	Then	type	nvim	to	open	
Neovim	again.	

Tip:	I	had	you	exit	to	the	terminal	above	because	it’s	easy	to	reason	about,	but	it	is	
also	possible	to	change	directories	from	inside	LazyVim	using	the	:cd	command.	
Type	:cd the/path/to/the/directory	and	hit	enter,	remembering	that	you	
can	use	the	Tab	key	to	autocomplete	the	path.	Now	if	you	use	:e	to	open	Qiles,	they	
will	be	relative	to	the	directory	you	speciQied.	If	you	are	using	a	Qile	picker,	they	
may	be	relative	to	that	cwd	or	to	the	project	containing	the	current	Qile,	as	
discussed	shortly.	Use	:pwd	to	see	what	the	current	directory	is.	

Ok,	so	you’re	in	the	root	directory	of	a	large	project	and	you	want	to	open	an	arbitrary	Qile.	
Simply	press	Space	twice	(i.e.	Space Space)	to	pop	up	the	“Files	In	Current	Project”	
picker.	As	I	mentioned,	this	is	the	easiest	keybinding	to	type	on	your	entire	keyboard.	The	
Space	bar	on	most	keyboards	is	big,	and	you’re	hitting	it	with	your	strongest	digit	–	the	
thumb.	As	usual,	just	one	Space	will	pop	up	the	Space	mode	menu,	and	you	can	see	that	a	
second	Space	will	present	you	with	“Find	Files	(root	dir)”.	

For	the	project	containing	the	current	state	of	this	book,	the	picker	looks	like	this:	

	

The	picker	is	divided	into	three	main	areas:	the	results	list	in	the	upper	left,	a	preview	of	
the	currently	selected	Qile	on	the	right,	and	the	Input	area,	in	this	case	labelled	“Git	Files”.	

The	input	area	is	actively	focused	and	currently	in	insert	mode,	so	you	can	just	start	typing	
the	name	of	whatever	Qile	you	want	to	open.	This	is	a	“fuzzy	search”,	(a	concept	popularized	
by	Sublime	Text)	which	means	you	can	skip	letters,	saving	you	oh-so-precious	milliseconds.	
For	example,	if	I	type	ch3,	my	list	gets	Qiltered	down	to	the	following	Qiles:	

	

Only	Qiles	whose	paths	contain	those	three	characters	in	order,	with	possibly	other	
characters	in	between,	are	visible.	The	picker	has	helpfully	highlighted	those	three	letters	in	
the	results	so	you	can	easily	see	why	it	matched	(Though,	depending	on	the	medium	you	
are	reading,	it	may	not	be	clear	in	the	image.)	

Also	notice	that	by	default,	the	match	is	case	insensitive.	I	typed	the	lowercase	letter	c,	but	
it	matched	the	uppercase	C	in	the	Qilename.	This	is	usually	sufQicient	to	narrow	the	search	
results	to	what	you	need.	However,	if	you	do	use	any	capitalized	letters	in	your	search	than	
it	switches	to	a	case	sensitive	mode	(this	is	sometimes	referred	to	as	“smart	case”).	

That	means	that	Ch	will	match	all	the	Chapters,	but	cH	will	not	match	anything	at	all.	More	
interesting,	chF	will	also	not	match	anything	at	all	because	the	presence	of	the	capitalized	F	
makes	the	whole	thing	case	sensitive,	and	the	chapters	are	all	named	with	a	capital	C,	so	the	
lowercase	c	is	not	able	to	match	them.	

Another	neat	picker	matching	trick:	Sometimes	you	will	start	typing	a	word	and	realize	you	
need	to	match	something	earlier	in	the	path	to	distinguish	it.	For	example,	I	started	typing	
outline	in	these	source	Qiles	from	Fablehenge:	

https://www.fablehenge.com

	

Outline	is	a	common	word	in	this	app.	There	are	243	matching	Qiles,	and	I	realize	I	should	
probably	have	typed	comp	in	front	to	narrow	it	to	just	Qiles	in	the	component	directory.	I	
could	switch	to	Normal	mode	and	edit	the	beginning	of	the	line,	but	it’s	faster	to	just	type	
<space>comp.	The	picker	will	interpret	the	space	as	“Qilter	the	lines	again	fuzzy	matching	
this	new	word	from	the	beginning”.	Here	we	can	see	that	only	comp...outline	Qiles	have	
been	matched:	

	

This	image	might	be	a	bit	surprising;	the	most	promising	match	is	obviously	the	one	at	the	
bottom	of	the	list	(which	is	why	it	is	selected).	The	other	27	matching	lines	contain	all	the	
letters	of	the	word	“outline”	and	all	the	letters	of	the	word	“comp”	in	order	from	left	to	
right.	However,	because	of	the	fuzzy	matching	algorithm,	the	two	can	actually	overlap!	So	
on	e.g.	the	second-to-last	entry,	the	c	of	the	matching	“comp”	is	before	the	word	outline,	
the	o	is	in	it,	and	the	m	and	p	both	come	after	the	word	outline.	The	picker	doesn’t	care,	
though	it	will	rank	matches	with	the	matching	letters	closer	together	as	more	important,	so	
they’ll	be	visible	at	the	bottom	of	the	results.	

You	can	use	the	up	and	down	arrow	keys	to	select	a	different	Qile	in	the	search	results,	and	
its	preview	will	show	up	in	the	right-hand	window.	Once	you	Qind	the	Qile	you	want	to	open,	
press	the	Enter	key	to	open	it	in	the	currently	active	Neovim	window.	

With	Telescope,	the	input	area	even	has	its	own	normal	mode!	You	can	get	into	it	using	a	
single	press	of	the	Escape	key.	Now	if	you	press	j	or	k,	you’ll	be	able	to	select	different	Qiles	
in	the	list	without	moving	your	hand	to	the	arrow	keys.	Further,	the	h	and	l	keys	will	allow	
you	to	move	the	cursor	within	the	input	box	and	you	can	use	the	i	or	a	keys	to	enter	insert	
mode	at	the	new	location.	The	“but	bigger”	I	and	A	keys	allow	you	to	move	the	cursor	to	the	
beginning	or	end	of	the	line	and	enter	Insert	mode	as	well.	

You	can	even	use	seek	mode,	as	we	discussed	in	Chapter	3,	though	it	works	a	bit	differently.	
When	you	press	the	s	key	while	in	the	Telescope	picker’s	normal	mode,	you	can	skip	the	
part	where	you	enter	a	character	to	search	for.	Instead,	LazyVim	will	immediately	label	
every	line	in	the	picker	with	a	character	to	the	left	of	the	Qilename:	

	

These	characters	are	labels	for	each	line	in	the	picker.	Simply	press	one	of	the	shown	letters	
on	your	keyboard,	and	whichever	line	the	label	associated	with	that	letter	is	on	will	be	
selected.	Then	press	Enter	to	actually	open	the	Qile	(or,	if	it	is	not	a	Qile	picker,	perform	the	
default	action	for	that	picker).	

Finally,	if	you	are	in	the	Telescope	window	and	decide	you	don’t	want	to	open	any	Qiles	after	
all	(or	you	got	the	information	you	needed	from	looking	at	the	preview	and	therefore	don’t	
need	to	open	it	all	the	way),	press	Escape	twice.	Once	to	enter	Normal	mode	in	the	
Telescope	picker,	and	a	second	time	to	close	the	picker.	

If	you	need	to	scroll	the	preview	window	to	see	something	lower	down	in	the	Qile,	the	same	
Control-d,	Control-u,	Control-f,	and	Control-b	keys	that	we	discussed	in	the	Basic	
Navigation	chapter	can	be	used.	

The difference between “Root” and “cwd”

The	<Space><Space>	command	is	mapped	to	“Find	Files	(Root	Directory)”.	Two	other	
ways	to	open	the	Qile	picker	are	to	use	<Space> f	to	open	the	“Qile/Qind”	menu,	and	follow	
it	with	either	f	again	or	F.	

<Space>ff	is	the	same	as	<Space><Space>.	It	opens	“Find	Files	(Root	Directory)”	and	is	
just	another	longer	way	to	get	there.	I	assume	it	exists	in	both	places	so	that	users	can	
choose	to	map	some	other	action	to	<Space><Space>	and	still	be	able	to	access	that	
functionality;	<Space><Space>	is	the	easiest	keybinding	to	hit	on	the	keyboard,	so	it	
makes	sense	to	assign	it	to	your	most	common	action.	If	your	most	common	action	isn’t	
opening	Qiles	with	the	picker,	you	will	still	want	to	be	able	to	do	that	with	the	slightly	longer	
<Space>ff	keybinding.	

<Space>fF,	where	the	second	F	is	shifted,	is	similar;	it	is	mapped	to	an	action	called	“Find	
Files	(cwd)”.	If	you	run	it	in	your	project,	you’ll	probably	Qind	that	it	appears	to	do	the	exact	
same	thing	as	“Find	Files	(Root	Directory)”	(depending	on	how	your	project	is	set	up),	so	
the	purpose	of	two	separate	keybindings	may	be	confusing.	

Current Working Directory

cwd	stands	for	“Current	Working	Directory”,	and	by	default,	it	refers	to	whatever	directory	
your	terminal	was	in	when	you	typed	nvim	to	open	the	editor.	As	I	mentioned	brieQly	while	
discussing	tab	completion	in	the	command	menu,	you	can	change	the	cwd	for	the	entire	
editor	by	entering	command	mode	with	:	and	then	typing	cd path/to/directory	
(remember,	all	commands	are	followed	by	a	carriage	return,	so	press	Enter	or	Return	
afterwards).	Now	if	you	use	<Space>fF,	the	list	of	Qiles	will	be	shown	relative	to	the	new	
directory	you	have	changed	into.	

If	you	are	unsure	what	directory	you	are	in,	you	can	use	the	:pwd	(short	for	“print	working	
directory”)	command	to	have	it	pop	up	in	a	little	notiQication	window.	cd	and	pwd	are	the	
same	commands	used	by	bash,	zsh,	and	many	other	shells	for	changing	and	printing	the	
working	directory,	so	they	may	already	be	familiar	to	you.	

We	haven’t	discussed	splitting	your	editor	or	opening	new	tabs	yet,	but	this	is	a	good	time	
to	note	that	it	is	actually	possible	to	have	different	working	directories	for	different	
windows.	The	command	to	change	just	the	current	window’s	directory	is	:lcd,	short	for	
“local	change	directory”.	This	can	be	a	powerful	way	to	work	on	multiple	projects	at	the	
same	time	(for	example,	if	you	are	a	full	stack	developer	working	on	backend	and	frontend	
projects).	However,	the	LazyVim	concept	of	a	“Root”	directory	can	semi-automate	a	lot	of	
this.	

Root directory

The	root	directory	is	not	a	Vim	concept,	but	is	instead	a	Language	Server	Protocol	(LSP)	
concept.	LSPs	are	the	reason	that	VS	Code	became	so	popular	so	quickly;	the	idea	was	that	
the	editor	could	call	out	to	an	external	service	running	on	your	computer	to	Qind	out	useful	
things	about	the	codebase.	The	LSP	powers	a	lot	of	useful	stuff	such	as	go	to	deQinition	and	
references,	highlighting	errors	in	your	code,	and	showing	documentation	for	a	variable	or	
class.	It	can	even	help	with	formatting	and	syntax	highlighting!	

The	root	directory	is	the	directory	that	the	LSP	infers	is	the	“home”	directory	of	the	
currently	open	Qile.	How	the	LSP	does	this	is	language	(and	language	server)	dependent.	For	
example,	in	Javascript	or	Typescript	projects	it	probably	searches	parent	directories	for	the	
presence	of	a	package.json	or	tsconfig.json	Qile	to	detect	the	root	directory,	whereas	
in	a	Python	project	it	might	instead	look	for	things	like	pyproject.toml	or	poetry.lock,	
and	Rust	projects	use	the	directory	that	contains	a	Cargo.toml.	Or	the	LSP	might	just	use	
the	presence	of	a	.git	folder	as	the	“root”	of	the	project’s	workspace.	

The	only	reason	this	root	directory	is	“often	the	same	as	your	cwd”	is	that	this	is	usually	the	
folder	you	want	to	work	from	when	you	are	working	on	a	project,	so	it’s	the	one	you	cd	into	
before	you	open	Neovim.	

This	automatic	root	directory	thing	can	be	super	useful	if	you	are	working	on	multiple	
projects.	Instead	of	using	lcd	as	discussed	in	the	previous	section,	you	can	just	open	a	Qile	
in	a	different	project	using	:e	or	one	of	the	Qile	Qinding	extensions	we’ll	discuss	next.	Then	if	
you	invoke	the	“Find	Qiles	(root	dir)”	command	using	<Space><Space>	or	<Space>ff,	it	
will	look	for	other	Qiles	in	the	same	root	directory	as	the	one	you	just	opened.	

However,	it	can	sometimes	be	confusing,	especially	if	you	are	working	in	a	so-called	
monorepo	or	if	you	have	root	directories	in	places	you	don’t	expect.	For	example,	I	have	a	

fairly	normal	Svelte	project	that	has	a	package.json	Qile	in	it.	This	projects	uses	Cypress	
for	testing,	and	the	Cypress	folder	has	a	tsconfig.json	Qile	in	it	that	causes	the	Typescript	
language	server	to	interpret	that	as	a	separate	root.	So	if	I	am	working	on	one	of	the	cypress	
test	Qiles	and	press	<Space><Space>,	the	root	directory	is	considered	the	Cypress	folder	
and	I	can	only	open	other	cypress	tests.	But	often	the	thing	I	wanted	to	do	was	open	a	
source	Qile	in	the	main	folder	to	see	why	a	test	is	failing.	In	this	case,	I	have	to	press	
<Escape><Escape>	to	exit	the	Telescope	picker,	then	<Space>fF	to	open	the	picker	in	
current	working	directory	mode	instead.	

Fzf.lua

LazyVim	recently	shipped	a	new	opt-in	picker	experience	that	can	be	used	as	an	alternative	
to	Telescope.	I	am	convinced	folke	did	this	just	to	make	my	life	as	an	author	harder.	They	
are	very	similar,	but	different	enough	that	they	need	to	be	documented	separately.	

The	main	advantage	of	fzf.lua	is	said	to	be	that	it	provides	a	“familiar”	interface	to	people	
who	are	used	to	using	the	fzf	tool	on	the	command	line.	The	Fzf	cli	tool	is	really	handy	for	
changing	directories	or	opening	Qiles	in	a	deeply	nested	Qilesystem	by	only	typing	a	handful	
of	characters	using	fuzzy	matching.	I’ve	used	it	for	years	and	highly	recommend	it.	That	
said,	I’ve	never	really	cared	whether	my	editor	had	the	exact	same	experience	as	the	CLI	
tool,	so	I	don’t	consider	it	a	compelling	argument.	

The	other	reason	fzf.lua	is	recommended	is	that	it	is	considered	to	be	more	performant	
than	Telescope.	I	haven’t	really	noticed	a	difference	on	my	machine	but	if	you	Qind	Telescope	
is	laggy,	you	might	want	to	try	out	fzf.lua.	

There	are	a	couple	downsides	to	fzf.lua,	though.	The	main	one	is	that	it	runs	in	a	Neovim	
terminal	window,	so	Normal	mode	behaves	really	weird.	Notably,	pressing	escape	once	
closes	the	picker	instead	of	entering	normal	mode	in	the	input	area	like	Telescope	does.	

The	second	downside	is	that	fzf.lua	doesn’t	have	the	robust	plugin	ecosystem	that	
Telescope	does.	In	practice,	there’s	only	one	plugin	that	I	miss	when	using	fzf.lua	instead	of	
Telescope,	but	if	you	become	a	Telescope	power	user,	you	might	Qind	there	are	many	pickers	
available	that	aren’t	there	when	you	use	fzf.lua.	

I	honestly	can’t	tell	you	which	one	to	use,	so	I	recommend	trying	both	and	then	deciding	for	
yourself.	I	personally	use	Telescope	because	I	hate	the	Neovim	Terminal	mode	that	
fzf.lua	uses.	

If	you	want	to	try	fzf.lua,	you	need	to	learn	about	Lazy	Extras.	I	go	into	more	detail	about	
Lazy	Extras	in	the	next	chapter,	but	the	short	story	is	they	are	optional	plugin	
conQigurations	that	you	can	enable	with	a	single	keypress.	To	enable	fzf.lua,	do	the	
following:	

• Type	:LazyExtras<Enter>	
• Move	your	cursor	to	the	line	that	contains	editor.fzf	
• Press	x	to	install	the	eXtra	
• Wait	a	moment	for	the	related	plugins	to	install	
• Restart	Neovim	

This	will	disable	Telescope	and	enable	fzf.lua.	You’ll	see	a	slightly	different	picker	layout	
when	you	open	it:	

	

The	main	difference	is	that	the	input	area	is	at	the	top	of	the	left	side	in	fzf.lua	instead	of	
the	bottom	as	it	is	with	Telescope.	

The	picker	behaves	similarly	to	Telescope,	so	I’ll	only	highlight	the	differences	here.	The	
biggest	one,	as	I	already	mentioned,	is	the	weird	Terminal-based	Normal	mode.	If	you	are	in	
the	input	area	and	want	to	enter	Normal	mode,	you	have	to	type	the	bizarre	set	of	
keybindings	Control-\	followed	by	Control-n	(we’ll	go	into	more	detail	about	Terminal	
mode	in	Chapter	15,	although	not	a	LOT	more	detail	because	I	hate	it).	This	Normal	mode	
does	allow	you	to	navigate	around	the	window	and	most	keybindings	will	behave	the	way	
you	expect	Normal	mode	to	behave.	

The	most	notable	exception	is	that	Seek	mode	doesn’t	behave	like	it	does	in	Telescope.	If	
you	want	to	get	the	behaviour	of	jumping	to	a	line	by	a	label	using	fzf.lua,	use	the	
unintuitive	Control-x	keybinding	instead.	

Fzf.lua	has	several	other	keybindings	conQigured	by	default;	you	can	see	a	helpful	menu	
of	them	by	hitting	F1.	The	only	ones	I	use	regularly	are	the	annoying	Emacs-style	Control-
a	and	Control-e	to	jump	to	the	beginning	or	end	of	the	input	area	,	and	Control-d	and	
Control-u	to	scroll	the	results	window.	

Throughout	the	rest	of	this	book,	I	will	generally	assume	you	are	using	Telescope	rather	
than	fzf.lua,	though	if	there	are	glaring	differences	between	the	two	I	will	try	to	mention	
them.	For	now,	though,	let’s	move	on	to	a	completely	different	Qile	selecting	experience.	

The Neo-tree.nvim plugin

Neo-tree	creates	a	left-sidebar	Qile	explorer	experience	that	should	be	familiar	to	users	of	
many	modern	IDEs	and	editors.	While,	like	many	of	those	environments,	Neo-tree	works	
with	the	mouse,	it	is	optimized	for	keyboard	interactions,	making	it	faster	to	work	with	
once	you	learn	“Neo-tree	mode”.	

I	want	to	be	upfront	and	honest	here:	I	don’t	personally	use	Neo-tree.	I	Qind	that	the	Qile	
pickers	we	just	discussed	are	the	fastest	way	to	open	Qiles,	and	when	I	need	to	manipulate	
the	Qilesystem,	I	prefer	to	use	mini.files,	which	we	will	discuss	later	in	this	chapter.	The	
primary	reason	I	prefer	mini.files	is	that	it	uses	the	same	keybindings	as	Vim	normal	
mode.	Modes	are	great,	but	having	more	of	them	than	necessary	is	not!	

However,	over	my	lifetime,	I	have	received	plenty	of	hints	that	I	may	be	rather	weird!	I	
suspect	that	many	readers	will	prefer	the	familiar	tree	view	experience	Neo-tree	provides,	
and	since	this	plugin	ships	with	LazyVim	by	default,	I	want	to	make	sure	it	gets	fair	
coverage	in	this	book.	

Let’s	start	by	opening	Neo-tree	using	the	<Space>-e	keybinding,	where	the	mnemonic	is	“e	
for	Explore”.	If	you	pop	up	the	Space	mode	menu,	you’ll	see	that,	as	with	the	fuzzy	picker,	
there	are	two	ways	to	open	the	Neo-tree	explorer:	<Space>-e	for	Explore Neo-tree
(root directory)	and	<Space>-E	for	Explore	Neo-tree	(cwd)`.	

“Root	directory”	and	“cwd”	have	the	same	meaning	we	discussed	in	the	previous	section,	
and	you	will	notice	the	consistent	relationship	between	lowercase	and	uppercase	letters:	
<Space>ff	and	<Space>e	both	open	the	root	directory,	and	<Space>fF	and	<Space>E	
both	open	the	current	working	directory.	

Tip:	To	hide	the	explorer	window,	just	press	<Space>e	again	while	it	is	visible,	or	
press	q	while	the	explorer	window	is	focused.	

When	the	explorer	is	opened,	it	shows	all	the	Qiles	and	folders	in	the	relevant	directory,	with	
all	the	folders	collapsed,	except	for	the	one	containing	the	currently	active	Qile,	if	there	is	
one.	For	example,	while	editing	this	Qile,	my	Neo-tree	looks	as	follows:	

	

It	may	not	show	up	clearly	in	the	screenshot,	but	the	cursor	is	on	the	Qile	I’m	currently	
editing.	I	can	move	that	cursor	up	and	down	using	the	arrow	keys	or	the	ubiquitous	j	and	k	
keys.	

Folders	are	collected	to	the	top	of	the	view.	If	you	move	the	cursor	to	one	of	these	folders,	
you	can	press	the	Enter	key	to	expand	the	folder.	And	if	you	move	it	to	a	Qile,	you	can	open	
the	Qile	in	the	current	Vim	window	with	the	same	Enter	keypress.	

You	can	also	expand	and	collapse	folders	and	open	Qiles	by	double	clicking	with	the	mouse,	
but	my	guess	is	you	won’t	want	to	do	that	once	you	learn	proper	keyboard	navigation.	

Speaking	of	keyboard	navigation,	yes,	j	and	k	to	move	up	and	down	can	be	super	slow	if	
there	are	a	lot	of	Qiles	to	navigate.	All	of	the	commands	that	we	discussed	in	Chapter	3	can	
be	used	to	move	faster.	For	example,	10j	will	move	the	cursor	10	lines	down	with	just	three	
keystrokes	compared	to	pressing	j	10	times,	and	Control-d	or	Control-u	can	be	used	to	
scroll	the	tree	down	or	up.	Most	interestingly,	s	can	be	used	to	Seek	to	any	line	in	the	Neo-
tree	view,	even	if	Neo-tree	is	not	currently	focused.	

Neo-tree	will	show	the	root	or	cwd	as	the	topmost	directory.	If	you	need	to	navigate	“up”	
the	tree	to	a	higher-level	directory,	you	will	need	to	use	the	Backspace	key.	

Tip:	Backspace	is	often	coded	as	<BS>	in	Vim,	so	if	you	see	a	keybinding	or	
instructions	telling	you	that	<BS>	does	something,	they	aren’t	full	of	(bull)!	It	just	
means	Backspace.	

In	addition	to	navigating	and	opening	Qiles,	you	can	even	make	changes	to	the	Qile	system	
using	Neo-tree.	For	example,	to	delete	a	Qile,	you	can	move	the	cursor	over	that	Qile	and	hit	
the	d	key.	You’ll	be	prompted	with	a	popup	window	asking	if	you	are	sure;	hit	y	and	then	
Enter	to	conQirm	it:	

	

To	add	a	Qile	or	folder/directory,	use	the	a	key	and	enter	a	new	name.	Use	a	trailing	slash	(/)	
to	indicate	a	folder.	You	can	also	use	the	A	key	in	the	explorer	to	add	a	folder	without	having	
to	type	a	trailing	slash.	

The	r	key	can	be	used	to	rename	the	Qile	or	folder	under	the	cursor.	

To	copy	or	move	a	Qile,	you	can	use	Neo-tree’s	pseudo-clipboard.	I	say	“pseudo-”	because	
you	can’t	use	this	to	copy	a	Qile	to	be	pasted	in	MacOS	Finder	or	Windows	Explorer;	only	to	
other	places	in	the	Neo-tree.	

To	cut	a	Qile	with	the	intent	of	moving	it	somewhere	else	in	the	tree,	use	the	x	command.	If,	
instead,	you	want	to	copy	the	Qile,	use	y.	The	mnemonic	for	y	is	yank,	and	is	actually	the	
same	key	you	would	use	to	copy	text	in	the	normal	editor.	To	complete	the	move	or	copy,	
you’ll	need	to	navigate	to	the	folder	you	want	to	move	or	copy	it	into	and	use	the	p	key	
(which	you	may	recall	means	“put”	or	“paste”).	

Neo-tree	also	has	a	Filter	mode	that	I	Qind	quite	clumsy;	it’s	really	just	a	cheap	imitation	
Telescope/fzf.lua	picker	in	a	smaller	window,	so	I	recommend	using	your	chosen	picker	
instead.	If	you	want	to	use	Neo-tree’s	Filter	mode,	you	can	access	it	using	/	and	enter	some	
characters	to	limit	the	search	results	to	Qiles	that	match	those	characters.	Then	use	the	up	
and	down	arrows	to	navigate	the	list	(j	and	k	won’t	work	here	because	you’re	in	a	sort	of	
Insert	mode	context).	

There	is	a	ton	of	other	cool	stuff	that	Neo-tree	can	do.	We	will	cover	its	use	for	buffer,	git,	
and	symbol	navigation	later,	for	example.	In	the	meantime,	you	can	use	the	?	(mnemonic	
“ask	question	for	help”)	key	while	the	Neo-tree	window	is	focused	to	get	an	overview,	
or	:help neo-tree	if	you	want	to	drink	from	the	Qirehose.	

The mini.files alterna/ve

As	I	mentioned,	I	don’t	actually	use	Neo-tree	for	Qile	navigation.	I	Qind	that	it	feels	kind	of	
“foreign	and	un-vim-like”.	To	me,	it	is	a	completely	separate	experience	that	just	happens	to	
be	embedded	in	a	Vim	window.	That	said,	I	also	don’t	like	the	tree	view	sidebar	experience	

in	VS	Code	and	the	editors	it	emulates	/	is	emulated	by,	so	it’s	possible	that	tree	views	just	
aren’t	right	for	me.	

These	are	just	my	opinions,	and	one	of	the	golden	rules	of	text	editors	is	“all	opinions	are	
valid”	(otherwise	there	would	be	war).	A	large	number	of	Neovim	users	love	Neo-tree,	and	
you	should	use	it	if	it	matches	your	mental	model.	

That	said,	I’m	clearly	not	alone	in	these	opinions,	because	LazyVim	optionally	provides	a	
different	Qile	management	experience	called	mini.files.	It	is	disabled	by	default.	

mini.files	is	part	of	a	suite	of	fairly	random	Neovim	packages	known	as	
mini.nvim.	These	plugins	are	largely	independent	from	each	other	and	provide	a	
lot	of	common	features	that	in	many	cases	ought	to	ship	with	Neovim.	
Occasionally,	the	mini.nvim	plugins	are	inferior	to	other	plugins	that	they	clone,	
but	a	number	of	them	are	best	in	class.	mini.files	is	not	the	only	mini	plugin	
that	ships	with	LazyVim,	and	we’ll	touch	on	others	later.	

The	mini.files	Qile	manager	is	kind	of	like	a	Neovim-native	experience	of	the	columnar	
view	that	is	popular	in	MacOs	Qinder,	among	other	Qile	managers.	The	main	reason	I	like	it	is	
that	editing	the	directory	listing	is	just	like	editing	a	normal	text	buffer.	I	don’t	have	to	
remember	that	a	means	“after”	in	Normal	mode,	but	it	means	“add	Qile/folder”	in	Explorer	
mode.	Instead,	in	mini.Qiles,	I	use	the	o	key	to	“create	a	new	line	below	the	current	line”,	and	
then	enter	the	Qile	name	in	Neovim	Insert	mode.	Later,	I	tell	mini.files	to	sync	my	
changes	and	it	will	create	the	Qile	for	the	new	row.	

In	order	to	use	mini.files,	you	have	to	enable	it	as	a	Lazy	Extra,	similar	to	how	we	
enabled	the	FZF	picker.	The	exact	steps	are:	

• Type	:LazyExtras<Enter>	
• Move	your	cursor	to	the	line	that	contains	mini.files	(Seek	mode	is	fastest)	
• Press	x	to	install	the	eXtra	
• Wait	a	moment	for	the	plugins	to	install	
• Restart	Neovim	

Using mini.files

Once	installed,	you	can	show	the	mini.Qiles	view	using	<Space>fm	and	<Space>fM.	By	
default,	these	are	not	quite	the	same	as	the	cwd/root	structure	we’ve	seen	in	Telescope,	
fzf.lua,	and	Neo-tree.	Instead,	they	are	listed	in	the	<Space>f	menu	as	follows:	

m -> Open mini.files (Directory of Current File)	
M -> Open mini.files (cwd)	

The	default	mini.files	conQiguration	doesn’t	have	an	open	in	root	option.	I	like	having	the	
ability	to	open	the	directory	of	the	currently	open	Qile,	but	I	don’t	like	losing	the	ability	to	
open	the	root	of	the	current	project.	I	show	how	to	address	this	in	the	next	section	where	
we	discuss	keybindings.	

Instead	of	a	sidebar,	the	mini.files	menu	shows	up	as	columns	of	windows	(known	as	
Miller	columns)	side-by-side.	For	example,	here’s	what	happens	when	I	open	mini.Qiles	to	
the	current	working	directory	of	this	book:	

	

This	book	is	published	as	a	svelte-kit	app.	The	left-hand	pane	shows	the	current	working	
directory,	and	the	right	pane	shows	the	contents	of	the	src	directory,	which	is	the	“focused”	
folder	in	the	left	pane.	

Interacting	with	mini.files	is	very	similar	to	interacting	with	a	standard	vim	window.	
You	can	use	the	j	and	k	keys	to	move	the	cursor	up	and	down.	If	this	places	your	cursor	
over	a	folder,	the	contents	of	that	folder	will	immediately	show	up	to	the	right,	and	if	it	is	
over	a	Qile,	you	will	see	a	preview	of	the	Qile	(by	default,	the	previews	are	smaller	than	what	
I	have	in	these	screenshots;	I’ll	show	you	how	to	change	that	in	the	next	section	if	you	have	
the	screen	real	estate	for	it).	

If	you	want	to	move	“into”	a	folder	to	interact	with	the	contents	of	that	folder	instead,	
simply	press	the	l	key	to	move	“right”.	Here,	I	moved	my	cursor	into	the	src	folder,	which	
immediately	opened	the	Qile	under	the	cursor	in	a	new	preview	window.	

	

Similarly,	pressing	h	will	move	“out”	of	the	current	folder.	If	the	cursor	is	in	the	left-most	
column,	moving	left	will	open	a	new	left-most	column,	so	you	can	navigate	right	up	to	the	
root	of	your	Qile-system	if	you	need	to.	

To	open	a	Qile	in	the	currently	active	Neovim	window,	press	l	on	that	Qile	again.	The	
behaviour	here	may	be	a	bit	surprising;	the	Qile	will	open	under	the	mini.files	view,	but	it	
won’t	hide	the	Qile	menu.	This	allows	you	to	open	multiple	Qiles	before	closing	the	navigator	
(which	can	be	done	with	the	q	key).	

The	beautiful	thing	about	mini.files	compared	to	Neotree	is	that	the	little	windows	act	
like	normal	editors,	and	all	the	navigation	features	you	have	become	used	to	are	available.	
For	example	Seek	mode	can	be	used	to	navigate	to	a	Qile.	Press	the	s	key	and	then	any	
number	of	characters	you	want	to	search	for.	Any	matches	to	the	typed	characters	will	be	
labelled	and	you	can	jump	to	them	by	typing	the	indicated	label.	

Even	modifying	the	Qilesystem	is	exactly	the	same	as	editing	a	normal	buffer.	We	haven’t	
really	covered	editing	yet	(I’m	just	as	surprised	as	you	are),	but	here’s	a	quick	overview:	

• To	rename	a	Qile	or	folder,	navigate	to	the	line	that	has	it,	and	enter	Insert	mode	to	
change	or	add	text.	

• Deleting	a	Qile	or	folder	uses	the	command	dd	which	is	the	keybinding	to	delete	an	
entire	line	of	text	in	normal	Neovim	windows.	

• Copy	a	Qile	or	folder	with	yy	the	command	to	copy	(yank)	a	line	of	text	
• Put/paste	a	deleted	or	yanked	Qile	with	p.	

We’ll	discuss	these	commands	and	more	in	Chapter	6.	The	main	point	is	that	pretty	much	
any	navigation	or	editing	command	you	learn	in	the	future	will	work	with	mini.files.	

Saving Filesystem Changes

Any	modiQication	that	you	make	using	these	keybindings	will	not	actually	be	saved	on	the	
Qilesystem	until	you	type	the	=	key,	which	is	a	(rare)	mini.files	speciQic	keybinding.	I	
think	of	it	as	meaning	“make	the	Qilesystem	equal	to	what	I’ve	typed”.	This	will	pop	up	a	
little	window	telling	you	what	actions	mini.files	wants	to	take	on	your	behalf,	such	as	
deleting,	moving,	renaming,	or	copying	Qiles.	You	can	conQirm	or	decline	the	changes	with	a	
y	or	n	(yes	or	no,	of	course).	

I	encourage	you	to	play	with	both	Neo-tree	and	mini.Qiles	until	you	can	make	a	decision	as	
to	which	of	the	two	you	prefer.	Eventually,	you	will	arrive	at	one	of	the	following	
conclusions:	

• You	prefer	Neo-tree	and	don’t	need	mini.files.	In	this	case,	revisit	the	LazyExtras	
mode	and	disable	mini.files	with	the	x	key.	

• You	use	Neo-tree	for	some	interactions	(possibly	things	we	haven’t	covered	yet,	such	
as	navigating	git,	buffers,	or	symbols)	and	mini.files	for	others.	In	this	case,	you	
are	probably	content	with	the	default	LazyVim	conQiguration	of	the	mini.files	
extra.	

• You	are	my	kind	of	weird	and	don’t	want	to	use	Neo-tree	at	all,	preferring	only	
mini.files.This	exact	situation	is	discussed	in	the	next	chapter	as	we	learn	more	
about	conQiguring	plugins.	

Summary

In	this	chapter,	we	learned	not	one,	but	four	different	ways	to	open	Qiles	and	interact	with	
the	Qilesystem	in	LazyVim:	Telescope,	fzf.lua,	Neo-tree,	and	mini.Qiles.	Each	provides	a	
different	mechanism	for	opening	and	managing	Qiles,	and	you	will	Qind	some	of	them	more	
comfortable	than	others.	

As	a	side-effect	of	studying	these	Qilesystem	tools,	we	got	a	tiny	preview	of	conQiguring	
plugins	and	installing	LazyVim	extras.	We	will	go	into	more	detail	of	this	in	the	next	chapter.	

Chapter 5: Configura/on and Plugin Basics

Chapter	5:	Plugin	Basics	-	LazyVim	for	Ambitious	Developers	

I’ve	mentioned	plugins	a	few	times	previously	and	you	even	got	to	see	the	lazy.nvim	
plugin	manager	in	action	back	in	Chapter	1.	LazyVim	has	a	unique	multi-layered	approach	
to	managing	plugins	that	requires	a	bit	of	description,	but	is	very	elegant	in	practice.	

Installing	plugins	allows	you	to	conQigure	Neovim	to	do	things	it	can’t	do	by	default.	Plugins	
are	written	in	either	Lua	or	VimScript	(though	most	Neovim	users	prefer	Lua-based	
plugins).	

The Three Categories of Plugins in LazyVim

The	simplest	plugins	to	use	in	LazyVim	are	pre-installed	by	LazyVim	itself.	You’ve	used	
many	of	them	already.	Some,	such	as	Neo-Tree,	Telescope,	and	lazy.nvim	provide	custom	UI	
components	to	interact	with	them.	Others,	such	as	Qlash.nvim	and	which-key	provide	new	
commands	or	modes	to	work	with.	Still	others	operate	quietly	in	the	background	auto-
matching	parenthesis	or	tags	and	drawing	indent	guides.	

These	plugins	are	preconQigured	in	LazyVim	with	(generally)	sane	defaults.	Because	they	
are	so	well	integrated,	customizing	those	defaults	is	doable,	but	sometimes	requires	a	few	
tricks	that	we	will	cover	in	this	and	later	chapters.	

The	second	category	of	plugin	in	LazyVim	are	the	so-called	“Lazy	Extras”.	These	plugins	are	
not	enabled	by	default,	but	can	be	enabled	with	just	a	couple	of	keystrokes	if	you	want	
them.	Lazy	Extras	exist	to	make	it	easy	to	install	popular	plugins	with	a	conQiguration	that	is	
guaranteed	to	play	nicely	with	the	other	plugins	that	ship	with	LazyVim.	

The	third	category	includes	third-party	plugins	that	LazyVim	has	no	awareness	of.	You	will	
have	to	conQigure	these	plugins	from	scratch	and	do	your	own	due	diligence	to	ensure	that	
keybindings	and	visual	artifacts	don’t	conQlict	with	the	plugins	that	LazyVim	manages.	In	a	
non-LazyVim	conQiguration,	all	plugins	fell	in	this	category,	and	it	could	be	a	headache	to	
maintain	as	plugins	evolved	and	fell	out	of	use	over	time.	In	LazyVim,	relatively	few	plugins	
fall	in	this	category,	so	the	whole	experience	is	much	more	pleasant.	

As	a	speciQic	example	consider	these	three	Neovim	plugins	for	Qile	management,	two	of	
which	we	discussed	in	the	previous	chapter:	

• Neo-tree.nvim	ships	with	LazyVim	and	is	active	by	default.	The	LazyVim	
conQiguration	for	Neo-tree	does	not	conQlict	with	other	LazyVim	plugins	by	default.	

• mini.files	ships	as	a	Lazy	Extra,	and	is	basically	a	“one	click”	(or,	since	this	is	Vim	
we’re	talking	about,	one	keypress!)	install	that	is	guaranteed	to	cooperate	well	with	
LazyVim.	

• oil.nvim	is	an	alternative	plugin	for	Qilesystem	management	that	LazyVim	does	not	
explicitly	support.	You	can	install	it	in	LazyVim	with	a	few	lines	of	conQiguration,	but	
it’s	not	quite	as	easy	to	set	up	as	mini.files	and	there	is	no	guarantee	it	won’t	
have	conQlicts	you	need	to	sort	out	yourself.	

From	Neovim’s	point	of	view,	all	these	plugins	are	exactly	the	same,	as	NeoVim	only	knows	
about	third-party	plugins.	LazyVim	just	comes	with	a	bit	of	extra	structure	that	you	need	to	
think	about	when	using	plugins.	Usually	this	structure	simpliQies	things,	but	occasionally	it	
adds	extra	hassle.	

Lazy Extras

In	the	previous	chapter,	I	covered	how	to	use	mini.files,	but	I	was	pretty	terse	on	the	
installation	instructions.	Now	we’ll	get	to	dive	deep.	

The	Lazy	Extras	mode	can	be	accessed	by	pressing	x	from	the	dashboard.	If	you	aren’t	on	
the	dashboard,	you’ll	need	to	enter	Command	mode	with	:	and	type	LazyExtras	followed	

by	the	usual	Enter	to	conQirm	a	command	(Incidentally,	you	can	also	show	the	dashboard	
at	any	time	by	typing	the	command	:Dashboard).	

Either	way,	you’ll	be	presented	with	a	list	of	possible	plugins	to	install.	On	my	setup	this	
looks	as	follows:	

	

I’ve	installed	over	a	dozen	extras	at	the	moment,	mostly	for	the	various	programming	
languages	I	dabble	in.	You	can	navigate	this	Qile	using	all	the	standard	navigation	commands	
such	as	j	and	k	s.	

No	matter	how	you	get	there,	once	your	cursor	is	on	the	extra	you	want	to	install	(such	as	
editor.mini-files)	line,	just	hit	the	x	key	to	install	the	extra.	If	you	want	to	uninstall	it,	
do	the	same	thing;	move	to	the	appropriate	line	(now	under	the	list	of	Enabled	extras),	and	
hit	x	to	disable	the	extra.	The	mnemonic	here,	of	course	is	that	x	means	“Extra”.	

You	may	need	to	quit	and	restart	Neovim	for	lazy.nvim	to	pick	up	that	the	extra	has	been	
installed	and	sync	it’s	dependencies.	

While	we’re	in	the	LazyExtras	screen,	I	recommend	enabling	the	lang.*	extras	for	
whichever	programming	languages	you	use	most	frequently.	You	should	also	install	all	the	
plugins	in	the	“Recommended	plugins”	section	(They	have	�	icons	beside	them)	except	
for:	

• ui.mini-animate	unless	you	have	a	much	much	faster	machine	than	I	do.	This	
plugin	is	extremely	laggy	on	me	2020-era	Intel	Imac	Pro.	

• editor.fzf	unless	you	have	decided	that	you	prefer	it	to	Telescope,	as	we	
discussed	in	Chapter	4.	

I	wouldn’t	install	any	other	extras	until	you’ve	either	encountered	them	later	in	this	book	or	
had	a	chance	to	research	them	after	you	Qinish	the	book.	Otherwise,	they	may	change	
behaviours	in	ways	that	I	won’t	have	the	foresight	to	write	about.	

You	can	Qind	more	information	on	each	extra	by	visiting	https://lazyvim.org	and	clicking	
the	“Extras”	menu	item	on	the	left	menu	bar.	It	includes	links	to	the	list	of	plugins	each	extra	
installs	as	well	as	the	conQiguration	LazyVim	brings	for	that	extra.	

Disabling a Built-in Plugin

Sooner	or	later,	you’re	going	to	want	to	edit	your	LazyVim	conQiguration.	The	out-of-the-box	
defaults	are	wonderful,	but	the	odds	are	that	they	don’t	100%	exactly	match	your	personal	
needs	(unless	you	are	the	LazyVim	maintainer,	in	which	case,	I	am	compelled	to	say,	“Hello,	
folke,	I	love	LazyVim!”).	

While	the	vast	majority	of	LazyVim’s	default	plugins	are	no-brainers	that	you	want	to	keep,	
you	may	Qind	there	are	one	or	two	plugins	that	you	just	don’t	need.	In	most	cases,	it	doesn’t	
actually	matter,	since	LazyVim	only	loads	plugins	when	you	actually	use	them,	so	you	can	
just	ignore	the	ones	that	aren’t	relevant	to	you.	

In	my	case,	I	have	disabled	only	two	core	plugins:	

• Neo-Tree,	as	I	foreshadowed	in	the	previous	chapter	
• headlines.nvim,	which	I	Qind	makes	my	markdown	hard	to	interact	with	

The	LazyVim	conQiguration	can	be	opened	from	the	dashboard	by	simply	pressing	the	c	key	
.	Or	you	can	use	Space	Mode	to	access	the	conQiguration	Qiles	at	any	time	using	<Space>fc	
for	“Find	ConQig	Files”.	

This	will	load	the	lazyvim	conQig	folder	in	your	Qile	picker.	This	folder	is	typically	
$HOME/.config/nvim.	Neovim	loads	$HOME/.config/nvim/init.lua	by	default,	and	if	
you	weren’t	using	LazyVim,	this	is	where	you	would	do	all	your	conQiguration.	

With	LazyVim,	init.lua	just	uses	the	lua	require	statement	to	include	the	LazyVim	
conQiguration	infrastructure.	You	will	normally	not	have	to	touch	this	Bile,	even	though	
most	third	party	plugins	have	installation	Qiles	that	assume	your	conQiguration	is	in	that	Qile.	
Instead	follow	the	“LazyVim	way”	as	outlined	in	this	chapter.	

In	addition	to	a	barebones	init.lua,	LazyVim	has	put	a	few	conQiguration	Qiles	and	a	bit	of	
folder	structure	in	the	conQiguration	directory.	

https://lazyvim.org

For	now,	the	main	thing	we	need	to	know	is	that	any	lua	Qiles	inside	the	lua/plugins	
subdirectory	will	be	automatically	loaded	by	LazyVim,	no	matter	what	their	name	is.	I	have	
a	number	of	different	Qiles	in	this	folder	for	my	custom	conQigurations.	

I	call	the	one	that	holds	my	disabled	plugins	disabled.lua.	The	easiest	way	to	create	this	
Qile	is	to	open	one	of	the	existing	conQig	Qiles	and	use	either	neo-tree	or	mini.Qiles	to	create	a	
new	Qile	in	the	same	folder,	as	described	in	the	previous	chapter.	

When	I	created	my	disabled.lua	Qile	in	the	lua/plugins	directory,	my	intention	was	to	
collect	all	the	LazyVim	plugins	I	don’t	want	in	it	because	I	assumed	LazyVim	wouldn’t	quite	
match	my	needs.	In	reality,	it’s	a	really	short	list!	The	contents	of	this	Qile	is	simply:	

return {	
 { "nvim-neo-tree/neo-tree.nvim", enabled = false },	
 { "lukas-reineke/headlines.nvim", enabled = false },	
}	

If	there	are	any	other	plugins	that	LazyVim	enables	by	default	that	you	don’t	want	to	use,	
just	follow	the	same	syntax.	The	Qirst	argument	in	each	Lua	table	is	a	string	containing	the	
github	repo	(with	owner)	you	want	to	disable.	The	second	argument	is	to	set	enabled =
false.	That’s	it!	

Tip:	You	will	inevitably	forget	the	return	statement	at	the	beginning	of	a	plugins	
Qile	at	some	point.	Now	you	know	to	watch	out	for	it.	

If	you	don’t	know	the	Lua	language…	honestly,	don’t	worry	about	it.	I’ve	never	formally	
studied	it,	but	I’ve	picked	up	enough	by	osmosis	to	easily	maintain	my	Neovim	
conQiguration.	

If	you’re	less	foolish	than	me,	you	might	want	to	type	:help lua	and	read	the	ofQicial	
Neovim	docs	on	the	topic.	followed	by	:help lua-guide-api.	

Modifying Keybindings (example)

Keybindings	are	one	of	the	few	things	I	don’t	love	about	working	with	LazyVim,	although	
it’s	not	strictly	LazyVim’s	fault.	I	just	never	quite	know	where	to	deQine	the	damn	
keybindings.	

There	are	basically	three	possible	places	to	conQigure	keybindings,	depending	on	how	any	
one	plugin	is	conQigured:	

• In	.config/nvim/lua/config/keymaps.lua.	This	is	where	you	conQigure	or	
modify	keybindings	that	are	not	speciQic	to	plugins,	but	rather	modify	core	Neovim	
functionality.	

• In	the	keys	Qield	of	the	lua	table	(in	Lua,	a	“table”	is	like	a	combination	of	an	array	
and	a	record	or	dict	in	many	other	dynamic	languages)	passed	to	a	plugin.	This	is	
typically	where	you	map	global	Normal	mode	keybindings	to	set	up	a	plugin.	This	is	
what	we	will	do	with	mini.files.	

• In	the	opts	(options)	argument	passed	into	a	plugin’s	conQiguration.	The	format	of	
the	options	for	any	one	plugin	are	plugin-speciQic,	but	many	plugins	prefer	to	set	up	
keymaps	on	your	behalf	through	options	instead	of	having	you	do	the	mapping	
yourself.	This	is	especially	true	if	the	keymaps	deQine	a	different	“mode”	or	only	
apply	if	the	plugin	is	currently	open	or	active.	I’ll	give	an	example	of	this	with	
mini.files	as	well.	

To	demonstrate,	I	want	to	“Qix”	the	fact	that	mini	Qiles	doesn’t	have	a	“open	in	root”	option.	I	
like	the	“open	in	directory	of	current	Qile”	option,	but	I	also	want	to	be	able	to	open	in	the	
root	directory.	

Reminder:	The	root	directory	is	the	top	level	directory	of	the	current	project	
according	to	the	existence	of	some	language-speciQic	Qile	such	as	package.json	
or	Cargo.toml.	The	cwd	is	the	current	working	directory	of	the	editor.	

Since	we’ve	disabled	neo-tree,	I’m	going	to	steal	the	<Space>e	and	<Space>E	
keybindings	and	reuse	them	for	mini.files,	then	I’ll	remap	the	existing	<Space>fm	
keybinding	to	open	the	root	so	I	can	access	all	three	models.	You	can,	of	course,	choose	
different	keybindings	if	they	map	better	to	your	mental	model	or	you	are	keeping	neo-tree	
around.	

In	a	Qit	of	“I’m	so	meta,	even	this	acronym”	(xkcd	917),	I	used	mini.Qiles	to	create	a	new	Qile	
named	extend-mini-files.lua	in	my	.config/nvim/lua/config/plugins/	
directory.	As	with	the	disabled.lua	Qile,	this	Qile	can	be	named	anything	so	long	as	it’s	in	
the	plugins	directory.	I	have	a	habit	of	preQixing	any	conQiguration	that	I	am	using	to	
change	the	defaults	provided	by	LazyVim	with	the	word	extend.	

This	makes	it	easy	to	distinguish	it	from	non-LazyVim	plugins	I’ve	installed	when	I’m	listing	
the	directory	using	mini.files	or	Telescope.	

Inside	this	new	Qile,	I	used	this	code:	

return {	
 "echasnovski/mini.files",	
 keys = {	
 {	
 "<leader>e",	
 function()	

https://xkcd.com/917/

 require("mini.files").open(vim.api.nvim_buf_get_name(0), true)	
 end,	
 desc = "Open mini.files (directory of current file)",	
 },	
 {	
 "<leader>E",	
 function()	
 require("mini.files").open(vim.loop.cwd(), true)	
 end,	
 desc = "Open mini.files (cwd)",	
 },	
 {	
 "<leader>fm",	
 function()	
 require("mini.files").open(LazyVim.root(), true)	
 end,	
 desc = "Open mini.files (root)",	
 },	
 },	
}	

I	constructed	this	by	reading	through	the	default	conQiguration	for	the	Telescope	Qind	Qiles	
and	Neo-tree	plugins,	which	is	conveniently	provided	on	the	LazyVim	website.	

To	satisfy	the	contract	with	lazy.nvim,	we	need	to	return	a	Lua	table,	wrapped	in	curly	
braces.	Lua	tables	can	act	as	an	array	and	a	dictionary	at	the	same	time.	In	this	case,	the	
Qirst	element	in	the	table	is	the	string	"echasnovski/mini.files".	It	doesn’t	have	a	
named	key,	so	it’s	kind	of	like	a	“positional	argument”.	

The	second	element	in	the	table	is	more	like	a	“named	argument”	in	that	it	is	indexed	with	
the	name	keys,	and	the	value	is	another	Lua	table.	However,	that	second	table	acts	more	
like	an	“array”	of	three	values	(three	more	separate	lua	tables)	because	it	doesn’t	have	
named	indices.	

It	is	important	to	understand	that	the	keys	Qield	is	merged	with	the	keys	that	are	provided	
by	the	default	LazyVim	(extras)	conQiguration	for	mini.files.	If	there	are	conQlicts	(such	
as	with	<space>fm),	my	values	take	precedence	over	the	defaults.	

This	is	a	powerful	feature	of	LazyVim	that	allows	you	to	use	hosted	conQiguration	provided	
by	LazyVim	but	override	it	as	needed.	Older	Neovim	distros	tended	not	to	have	this	level	
Qlexibility,	so	you	were	either	stuck	with	their	conQiguration	or	had	to	copy	the	whole	thing	
and	edit	it,	which	made	updates	a	nightmare.	

To	be	clear,	keys	is	a	LazyVim	concept	(technically,	it’s	actually	part	of	the	underlying	
lazy.nvim	plugin	manager).	Any	plugin	conQiguration	can	have	a	keys	array	table,	and	
those	keybindings	will	be	merged	with	the	default	Neovim	keybindings,	the	LazyVim	
keybindings,	your	custom	global	keybindings,	AND	any	other	plugin	keybindings.	

Yes,	that’s	a	lot	of	potential	for	conQlicts,	which	is	why	I’m	so	glad	LazyVim	has	done	most	of	
the	conQiguration	for	me!	

Structure of a keys entry

Each	item	in	the	keys	table	is	another	Lua	table	with	(in	this	case)	three	Qields.	The	Qirst	
two	Qields	are	positional	and	represent	the	keybinding	name	and	the	lua	callback	function	
that	gets	called	whenever	that	keybinding	is	invoked.	The	third	Qield	is	a	named	Qield,	desc	
and	provides	a	string	description	that	will	be	shown	in	the	Space	mode	menu.	

The	keybinding	sequence	in	the	Qirst	entry	is	using	a	standard	syntax	that	comes	from	Vim.	
Recall	that	<leader>	is	an	old	Vim	concept	that	allows	you	to	conQigure	which	key	is	used	
as	the	preQix	for	custom	keybindings.	In	LazyVim	(and	indeed,	for	most	modern	Neovim	
users),	the	leader	is	<Space>.	Special	keys	are	indicated	to	Vim’s	keybinding	engine	using	
angle	brackets,	so	you	will	often	see	notations	such	as	<Space>,	<Right>,	<Left>	or	<BS>.	

After	the	<leader>	string,	we	include	any	additional	keys	that	need	to	be	pressed.	For	the	
simple	ones,	we	have	e	and	E	to	replace	the	Neo-tree	keybindings	we	disabled	with	new	
mini.files	keybindings.	The	third	one	is	a	bit	more	complicated,	as	the	f	indicates	that	
this	action	will	be	available	under	the	file/find	submenu	in	Space	mode,	and	the	m	
indicates	which	letter	will	be	in	this	menu.	

For	the	callbacks,	we	use	Lua	functions,	which	always	start	with	function	and	end	with	
end.	These	are	anonymous	(unnamed)	functions,	and	they	don’t	accept	any	parameters	
inside	the	parentheses.	In	the	function	bodies,	we	call	speciQic	code	to	open	mini.files	
the	way	we	want.	In	two	cases	I	just	copied	this	code	from	LazyVim’s	default	mini.files	
conQiguration,	and	in	the	third,	I	cobbled	it	together	by	combining	code	from	the	Neo-tree	
and	mini.files	conQigurations.	The	LazyVim	global	is	a	handy	library	with	a	collection	of	
utility	functions	to	aid	with	conQiguration.	The	LazyVim.root	function	is	used	to	Qind	the	
root	of	a	project	and	returns	a	string	that	we	pass	to	mini.files.open.	

Customizing the mini.files Op/ons

As	I	mentioned,	the	keys	table	is	merged	with	the	default	keys	table	that	LazyVim	has	
conQigured	for	mini.files.	Similarly,	most	Neovim	plugins	can	be	conQigured	with	an	opts	
table	that	contains	custom	conQiguration	speciQic	to	that	plugin.	If	you	supply	an	opts	
table,	it	will	be	merged	with	the	default	LazyVim	one	(if	there	is	one).	

You’ll	need	to	read	each	plugin’s	documentation	(often	available	on	Github,	and	usually	
available	with	:help plugin-name)	to	know	exactly	what	options	are	available	for	it.	
You’ll	also	need	to	review	the	default	conQiguration	that	LazyVim	is	setting	up	for	that	
plugin	so	you	understand	how	it	will	merge.	

In	my	case,	I	pass	the	following	opts	array	to	mini.files:	

return {	
 "echasnovski/mini.files",	
 keys = {	
 -- the keybindings from above	
 },	
 opts = {	
 mappings = {	
 go_in = "<Right>",	
 go_out = "<Left>",	
 },	
 windows = {	
 width_nofocus = 20,	
 width_focus = 50,	
 width_preview = 100,	
 },	
 options = {	
 use_as_default_explorer = true,	
 },	
 },	
}	

The	mappings	table	in	mini.files	is	used	to	override	the	default	keymappings	that	are	
active	while	the	mini.files	view	is	open.	This	is	different	from	the	global	keymaps	we	
deQined	earlier	to	open	mini.files.	In	my	case,	I	have	mapped	go_in	and	go_out	to	use	
the	arrow	keys	instead	of	h	and	l	because	of	the	left-handed	Dvorak	Kinesis	weirdness	I	
described	previously.	I	don’t	recommend	you	make	this	change;	h	and	l	will	work	better	for	
most	anybody	who	isn’t	me.	

The	window	options	are	there	because	I	have	a	32”	6k	monitor,	which	means	I	can	afford	to	
have	larger-than-normal	explorer	columns.	Refer	to	the	mini.files	help	for	more	
information	on	these	options.	

So	now	you	know	a	little	bit	about	conQiguring	plugins	in	LazyVim.	It	is	both	a	little	bit	
easier	and	a	little	bit	harder	than	conQiguring	plugins	from	scratch:	

• It	is	easier	because	you	only	need	to	change	the	values	that	are	non-default,	instead	
of	setting	up	an	entire	conQiguration,	and	LazyVim	comes	with	very	sane	defaults.	

• But	it	is	harder	because	you	sometimes	have	to	think	about	how	the	option	and	
keybinding	merging	happens,	which	wouldn’t	be	necessary	if	you	just	had	one	great	
big	conQiguration	object	to	begin	with.	This	merging	can	get	quite	tricky	for	plugins	
that	have	complicated	default	LazyVim	conQigurations.	

Modifying Exis/ng Op/ons

Sometimes	the	“merging”	behaviour	LazyVim	uses	to	overwrite	options	with	the	ones	you	
provide	in	your	plugin	overrides	is	too	simplistic.	This	most	often	happens	when	you	are	
modifying	a	plugin	that	calls	or	deQines	a	function	for	options	behaviour	instead	of	
customizing	it.	

To	support	this	situation,	the	opts	entry	in	a	lazy.nvim	plugin’s	conQiguration	table	can	be	
a	function	instead	of	a	static	table.	The	function	accepts	the	previous	opts	table	as	it	was	
conQigured	by	LazyVim	as	an	argument.	Your	function	needs	to	modify	this	table	to	suit	your	
desired	behaviour.	

Note	that	it	does	not	return	a	new	opts	table;	it	needs	to	modify	the	one	that	was	passed	
in.	

For	example,	the	default	LazyVim	conQiguration	for	the	nvim-cmp	plugin	is	a	pretty	long	
and	complicated	function.	The	nvim-cmp	plugin	is	responsible	for	the	completion	pop-up	
menu	that	provides	suggestions	as	you	type.	It	is	an	insanely	useful	feature,	but	I	don’t	like	
that	by	default	(in	LazyVim),	selecting	a	completion	is	done	with	an	Enter	keypress.	This	
drives	me	nuts	when	editing	text	as	I	am	right	now	because	I	press	enter	for	new	lines	all	
the	time,	often	ignoring	the	pop-up.	

There	are	a	couple	recipes	for	modifying	this	behaviour	in	the	LazyVim	docs,	and	other	
recipes	you	can	try	in	the	nvim-cmp	README.	In	my	case,	I’ve	conQigured	it	as	follows:	

return {	
 {	
 "hrsh7th/nvim-cmp",	
 opts = function(_, opts)	
 local cmp = require("cmp")	
 opts.mapping = vim.tbl_extend(
 "force",	
 opts.mapping,	
 {	
 ["<Right>"] = cmp.mapping.confirm({ select = true }),	

 ["<CR>"] = function(fallback) cmp.abort() fallback() end,	
 }	
)	
 end,	
 },	
}	

This	opts	function	accepts	the	LazyVim-deQined	opts	table	as	its	second	parameter.	My	
code	changes	those	opts	using	the	tbl_extend	function	provided	by	Neovim.	I	add	a	new	
["<Right>"]	key	to	accept	the	suggestion	(this	matches	Qish	shell	behaviour)	and	
overwrite	the	<CR>	key	with	abort	completion	behavior.	

This	is	harder	to	maintain	than	if	I	just	had	the	whole	conQiguration	the	way	I	wanted	it	in	
the	Qirst	place,	but	easier	to	maintain	than	if	I	had	to	write	that	conQiguration	from	scratch	in	
the	Qirst	place.	I	am	willing	to	accept	that	tradeoff	for	all	the	places	that	LazyVim	conQigures	
things	better	than	I	would	have	done	on	my	own.	

Installing third-party plugins

Installing	a	third-party	plugin	is	little	different	from	conQiguring	a	Lazy-Vim	provided	
plugin,	except	that	you	don’t	have	to	worry	about	how	the	keys	and	opts	are	merged	with	a	
default	conQig.	

Simply	create	a	new	Lua	Qile	in	the	plugins	directory	(named	appropriately	for	the	plugin).	
Inside	the	Qile,	return	a	Lua	table	where	the	Qirst	entry	is	the	GitHub	repo	and	name	of	the	
plugin,	with	other	conQiguration	(opts	and	keys,	among	others)	after	that	name.	

For	example,	I	like	the	guess-indent.nvim	plugin	to	set	my	shift	width	based	on	the	
contents	of	the	Qile	I	am	currently	editing.	It	is	maintained	by	the	github	user	nmac427,	so	
my	plugins/guess-indent.lua	Qile	looks	like	this:	

return {	
 "nmac427/guess-indent.nvim",	
 opts = {	
 auto_cmd = true,	
 override_editorconfig = true	
 },	
}	

The	opts	table	depends	entirely	on	what	the	plugin	expects.	In	this	case,	I	read	the	guess-
indent.nvim	README	and	found	two	options	that	I	wanted	to	set.	

Most	modern	Lua	plugins	will	be	documented	as	having	to	call	a	setup	function	with	a	Lua	
table	containing	the	conQiguration.	If	the	plugin	you	are	trying	to	set	up	does	not	have	
explicit	Lazy.nvim	instructions,	don’t	worry!	Whatever	gets	passed	into	that	setup	function	
is	what	you	need	to	include	in	the	opts	passed	to	the	LazyVim	plugin	manager.	

For	example,	another	third-party	plugin	I	recommend	is	chrisgrieser/nvim-spider,	
which	subtly	changes	the	w,	e,	and	b	commands	to	support	navigating	within	CamelCase	
and	snake_case	words.	I	have	a	Qile	named	nvim-spider.lua	in	my	plugins	directory	as	
follows:	

return {	
 "chrisgrieser/nvim-spider",	
 keys = {	
 {	
 "w",	
 "<cmd>lua require('spider').motion('w')<CR>",	
 mode = { "n", "o", "x" },	
 desc = "Move to end of word",	
 },	
 {	
 "e",	
 "<cmd>lua require('spider').motion('e')<CR>",	
 mode = { "n", "o", "x" },	
 desc = "Move to start of next word",	
 },	
 {	
 "b",	
 "<cmd>lua require('spider').motion('b')<CR>",	
 mode = { "n", "o", "x" },	
 desc = "Move to start of previous word",	
 },	
 },	
}	

This	plugin	doesn’t	automatically	set	up	keybindings,	so	I	pass	a	keys =	table	to	the	plugin	
conQiguration.	This	array	is	not	passed	to	the	plugin.	Rather,	the	keys	are	parsed	by	the	
lazy.nvim	plugin	manager	and	added	to	the	global	keybindings.	It	is	convenient	to	keep	the	
keys	with	the	plugin	so	all	the	conQiguration	is	in	one	place.	

I	am	satisQied	with	the	default	options	that	nvim-spider	passes	to	its	setup	function	
(after	reading	the	README),	so	I	don’t	have	to	pass	an	opts	array.	

The	best	resource	for	Qinding	third-party	plugins	is	the	github	repository	rockerBOO/
awesome-neovim.	The	list	is	well-maintained	and	(most	importantly)	pruned	regularly,	so	
there	are	no	outdated	or	unmaintained	plugins	on	the	list.	

In	practice,	LazyVim	already	ships	with	the	best-in-class	versions	of	most	plugins	(built-in	
or	as	extras),	so	you	won’t	have	to	add	many,	but	if	you	come	across	any	“I	wish	LazyVim	
could…”	scenarios,	the	answer	is	probably	“it	does	and	the	plugin	to	do	it	is	listed	in	the	
Awesome	Neovim	repo”.	

Summary

In	this	chapter,	we	learned	a	little	bit	about	how	LazyVim	integrates	with	the	wider	Neovim	
plugin	ecosystem.	It	provides	sane	default	plugins	and	conQiguration,	but	makes	it	easy	to	
customize	that	conQiguration	for	your	own	needs.	

We	learned	that	built-in,	extras,	and	unknown	third	party	plugins	are	all	treated	slightly	
differently	(though	consistently),	and	saw	examples	of	how	to	install	some	of	the	plugins	I	
personally	Qind	indispensable.	

Now	that	you	know	how	to	open	Qiles	and	conQigure	plugins,	we	can	get	back	to	some	of	the	
nuts	and	bolts	of	modal	editing.	You	already	know	how	to	switch	between	Normal	and	
Insert	mode	and	you	can	navigate	around	your	code.	In	the	next	chapter,	we’ll	cover	some	
basic	editing	features	that	blur	the	line	between	navigating	and	inserting	text.	

Chapter 6: Basic Edi/ng

Chapter	6:	Basic	Editing	-	LazyVim	for	Ambitious	Developers	

Armed	with	the	navigation	keybindings	you’ve	already	learned	and	the	ability	to	enter	and	
leave	Insert	mode	at	will,	your	Vim	editing	experience	is	getting	pretty	close	to	on	par	with	
what	you	might	be	used	to	in	non-modal	editors.	

However,	moving	around	and	inserting	text	is	a	very	small	part	of	the	life	of	a	software	
developer.	More	often,	you	need	to	edit	text.	Deleting	code,	changing	code,	refactoring	code	
moving	code	around.	It’s	the	majority	of	what	we	do.	

Yes,	you	can	do	all	of	these	things	by	navigating	to	where	you	want	to,	and	entering	insert	
mode.	The	delete	and	backspace	keys	do	the	same	thing	in	insert	mode	that	they	do	in	
other	editors.	But	there	are	far	more	efQicient	tools.	

https://github.com/rockerBOO/awesome-neovim
https://github.com/rockerBOO/awesome-neovim

The	best	part	is	that	you	already	know	most	of	what	you	need	to	take	advantage	of	very	
powerful	editing	commands!	

The Vim Command Mental Model

The	navigation	commands	such	as	s	and	f	and	hjkl	and	web	that	you	already	know	are	
collectively	known	as	motion	commands.	They	move	the	cursor	from	its	current	location	to	
a	new	location.	

Most	motion	commands	can	be	preQixed	with	a	count,	so	the	navigation	model	is	always	
<count><motion>.	The	effect	of	a	count	is	usually	to	repeat	the	motion	a	certain	number	
of	times,	although	some	commands	such	as	Shift-G	for	“Go	to	line”	will	use	the	count	as	
an	absolute	value	instead.	If	the	count	is	blank,	the	“default”	count	is	typically	1.	Even	a	Seek	
command	which	uses	labels	is	allowed	to	be	preQixed	with	a	count	(although	the	count	will	
be	ignored).	

The	<count><motion>	commands	are	great	for	navigation,	which	is	all	we’ve	used	them	
for	so	far,	but	they	can	also	be	combined	with	a	verb	to	do	something	to	the	text	between	
the	cursor	and	the	location	the	motion	would	move	you	to.	

Verbs	come	Qirst,	so	the	structure	is	always	<verb><count><motion>.	Navigation	is	the	
“default”	verb,	so	if	you	leave	the	verb	blank	(i.e.	skip	it),	your	cursor	moves	to	the	location	
indicated	by	the	motion.	We’ll	discuss	several	important	verbs	in	this	chapter.	

But	the	model	keeps	growing!	It	turns	out,	verbs	can	also	be	counted.	The	syntax	becomes	
<count><verb><count><motion>.	I	have	never	in	my	life	used	all	four	of	those	in	one	
command,	however.	Typically	you	would	either	do	<count><verb><motion>	OR	
<verb><count><motion>.	

This	is	starting	to	look	like	a	full	Qledged	grammar	(spoiler	alert:	it	is).	

This	model	is	nice	because	it	allows	you	to	divide	and	conquer	your	learning	strategy,	and	
reuse	knowledge	as	you	study.	First	you	learned	motion	commands.	Then	you	learned	
counts.	Now	you	will	learn	verbs.	If	you	learn	new	motion	commands	or	new	verbs	in	the	
future,	you	can	mix	them	with	all	the	verbs	and	motions	you	already	know	and	they	should	
behave	in	a	predictable	way.	

Various	plugins	try	to	mimic	this	strategy,	and,	well,	most	are	successful.	My	main	
complaint	with	Neo-tree	is	that	it	doesn’t	operate	with	the	<verb><motion>	mental	
model,	while	Mini.files	does.	Similarly,	some	folks	argue	that	Seek	mode	violates	the	
Vim	mental	model	because	counts	don’t	make	sense.	My	opinion	is	that	Seek	mode	simply	
transcends	counts,	but	it	still	combines	cleanly	with	verbs	so	it	is	a	valid	Vim	model.	

A Note on Insert Mode

Like	all	models,	this	one	is	not	perfect.	For	example,	you	can	use	counts	with	the	i,	I,	a,	and	
A	commands,	but	it’s	clear	that	“enter	insert	mode”	is	neither	a	motion	nor	a	verb.	

For	example,	if	you	type	5ifoo<Escape>,	Neovim	will	insert	foofoofoofoofoo	for	you.	
That	may	not	seem	very	useful,	but	if	you	ever	want	an	80	character	*	ruler	to	underline	a	
heading,	80i*<Escape>	is	pretty	nifty!	

But	the	<count>i	“not-motion”	commands	cannot	be	combined	with	verbs	like	the	
navigation	commands	you’ve	learned,	so	it’s	important	to	know	the	limits	of	the	model.	

So	now	that	you	understand	how	the	motions	you	already	know	can	combine	with	verbs	to	
perform	actions	other	than	navigation,	you	just	need	to	learn	some	verbs.	

Dele/ng Text

I’ve	previewed	this	a	couple	times	already,	and	even	if	I	hadn’t,	you	can	probably	guess	that	
the	verb	for	deleting	text	is	d.	

So	where	motion	will	take	you	to	a	speciQic	location	in	the	code,	d<motion>	will	delete	all	
the	text	between	the	cursor	and	that	location.	Here	are	some	examples:	

• dh	to	delete	the	character	to	the	left	of	the	cursor.	
• d3w	to	delete	three	words.	
• 3dw	to	delete	one	word,	three	times.	
• d^	to	delete	from	the	cursor	to	the	beginning	of	the	line.	
• d2fe	to	delete	all	text	between	the	cursor	location	and	the	second	e	after	the	cursor,	

including	that	second	e.	
• d2Ta	to	delete	all	text	between	the	cursor	and	the	second	a	behind	the	cursor,	not	

including	that	second	a.	
• dsfoos	to	delete	text	between	the	current	cursor	position	and	the	label	s	that	pops	

up	when	you	use	Seek	mode	to	seek	to	foo.	Note	that	Seek	mode	always	jumps	to	
the	beginning	of	the	word	you	searched	for.	This	means	that	if	the	foo	you	jump	to	is	
after	the	current	cursor	location,	the	oo	will	not	be	deleted,	but	the	f	will.	But	if	the	
foo	you	jump	to	is	before	the	current	cursor	location,	all	three	letters	of	foo	will	be	
deleted.	

If	any	of	those	are	surprising,	ignore	the	d	and	refer	back	to	earlier	chapters	to	refresh	your	
memory	of	the	motions.	

So	d	will	work	with	all	the	motion	commands	you	know,	as	well	as	all	the	motion	
commands	you	don’t	yet,	and	all	the	motion	commands	that	are	deQined	by	plugins	you	
haven’t	yet	installed.	

When	the	delete	command	is	completed,	Neovim	will	still	be	in	Normal	mode,	and	you	can	
immediately	perform	any	other	<verb><motion><pair>	combination.	

Changing Text

Sometimes	you	just	want	to	delete	text,	but	another	common	task	is	editing	text.	Replace	a	
word	with	another	word,	change	spelling	(coincidentally,	I	just	misspelled	“change”),	delete	
the	rest	of	the	paragraph	and	replace	it	with	something	new,	etc.	

This	can	easily	be	handled	by	combining	the	delete	verb	with	Insert	mode	(e.g.	dwi	will	
delete	a	word	and	enter	insert	mode.)	However,	you	can	save	a	keystroke	by	using	the	c	
verb,	which	means	“change”.	If	you	replace	the	d	in	each	of	the	examples	I	outlined	above	
with	a	c,	you	will	effectively	get	“delete	the	text	and	immediately	enter	insert	mode.”	

Opera/ng to end of the current line

It	is	very	common	to	want	to	delete	or	change	from	the	cursor	position	to	the	end	of	the	
current	line,	leaving	the	beginning	of	the	line	intact.	These	actions	happen	more	often	than	
you	would	expect	in	source	code	editing,	so	there	is	a	shortcut	for	them.	

Yes	you	could	d$	and	c$	to	delete	or	change	to	the	end	of	the	line,	since	$	is	the	“jump	to	
end	of	line”	motion.	That	is	the	“correct”	format	for	the	mental	model.	However,	because	
this	is	such	a	common	operation,	you	can	“cheat”	with	one	fewer	keystrokes	and	just	use	
the	capitalized	D	or	C	instead.	

Note	that	there	is	no	inverse	shortcut	verb	for	“delete	to	the	beginning	of	the	line”,	so	you’ll	
have	to	use	d^	or	d0	instead,	where	^	is	the	motion	to	jump	to	the	Qirst	non-blank	character	
and	0	is	the	motion	to	jump	to	the	Qirst	column.	

Opera/ng on en/re lines

Another	common	action	is	to	change	or	delete	an	entire	line	of	text.	So	much	so,	in	fact,	that	
there	are	special	motions	for	“the	whole	line”.	These	motions	are	accessed	by	duplicating	
the	verb.	This	is	another	place	where	the	mental	model	kind	of	breaks	down;	the	
interpretation	of	the	motion	depends	on	the	verb.	

In	practice,	this	just	means	that	dd	deletes	an	entire	line	and	cc	deletes	it	and	enters	insert	
mode.	These	are	nice	and	easy	to	type,	so	it	makes	for	a	nice	shorthand.	

You	can	combine	these	bespoke	motions	with	counts.	d3d	will	delete	three	lines,	and	3dd	
will	delete	one	line	three	times	(which	is	faster	to	type	because	you	don’t	have	to	move	your	
Qinger	off	of	d	to	hit	it	twice).	Yes,	that	has	the	same	outcome	either	way,	but	the	model	is	
such	that	you	can	use	either	of	them.	Note	that	there	are	situations	where	the	two	formats	
may	have	subtly	different	behaviours,	although	in	practice	I	have	never	encountered	
surprises.	

Some shortcuts for modifying individual characters

Another	common	operation	is	to	perform	a	delete	or	change	operation	on	a	single	character	
or	speciQic	number	of	characters.	You	could	do	this	using	dl	to	delete	the	character	under	
the	cursor	or	4dl	to	delete	that	character	and	the	three	characters	that	come	after	it.	
However,	because	you	do	this	so	often,	there	is	a	shorthand	verb	that	doesn’t	have	a	motion	
(or	rather,	the	motion	is	implied):	x.	For	example,	you	can	use	x	to	delete	an	extraneous	u	in	
words	like	behaviour	if	your	editor	is	from	the	USA	but	you	live	in	a	member	of	the	
Commonwealth.	The	single	letter	will	be	deleted,	and	you’ll	be	back	in	Normal	mode	ready	
to	proceed.	

The	x	command	can	be	used	with	a	count,	so	if	you	want	to	delete	Qive	characters	starting	
with	the	one	under	the	cursor,	just	use	5x.	

If	you	need	to	go	the	other	direction	and	delete	characters	before	the	cursor,	use	a	capital	X.	
This,	too,	can	have	a	count,	and	it	will	basically	delete	that	many	characters	to	the	left.	I	
rarely	use	this,	since	the	shift	brings	us	up	to	two	keystrokes	anyway,	and	hx	or	d4h	is	no	
harder.	

If,	instead	of	deleting,	you	need	to	replace	a	character	with	a	different	character,	use	the	r	
command.	This	command	will	brieQly	enter	insert	mode	while	you	type	one	character,	then	
immediately	return	to	normal	mode.	Much	fewer	keystrokes	for	a	common	operation	
(spelling	errors	are	common,	right?	It’s	not	just	me?)	than	something	like	cle<Escape>.	
Using	r	with	a	count	is	possible,	but	the	behaviour	is	kind	of	unhelpful:	it	will	replace	the	
character	under	the	cursor	and	the	appropriate	number	of	characters	after	that	character	
with	the	same	letter.	The	only	place	I	can	imagine	this	being	helpful	is	when	you	copy-paste	
a	password	prompt	from	somewhere	and	need	to	replace	all	the	characters	in	the	password	
with	*.	

Another	common	operation	is	deleting	the	newline	at	the	end	of	the	current	line.	Use	the	J	
(j	stands	for	“Join	Lines”)	command	from	anywhere	in	the	line.	I	use	this	one	a	lot.	If	you	
need	to	merge	multiple	consecutive	lines	together,	J	takes	a	count.	It	generally	does	the	
right	thing	around	whitespace	(replacing	indentation	with	a	single	space),	but	if	you	need	
to	do	a	join	without	modifying	whitespace,	use	the	two-character	combination	gJ.	

Manipula/ng Case

If	you	need	to	convert	a	character	or	sequence	of	characters	to	uppercase,	use	the	verb	gU	
(That’s	a	shifted	U	for	the	second	character)	followed	by	any	standard	navigation	motion.	
(Nobody	said	a	verb	had	to	be	a	single	letter,	though	most	are).	I	Qind	this	particular	verb	
frustrating	because	g	is	normally	assigned	to	the	Go To	motions.	In	this	case,	(as	with	gJ	
above)	it	is	a	verb	instead.	

I	guess	you	can	think	of	it	as	“Go	To	and	Convert	to	Uppercase”	where	U	is	short	for	
Uppercase.	

The	inverse	function	to	convert	all	text	between	the	current	cursor	position	and	the	motion	
destination	is	to	use	a	lowercase	gu	before	the	motion.	Kind	of	weird	to	remember,	but	it	
does	match	the	common	Vim	idiom	of	“u”	means	an	action	and	“U”	means	the	same	action	
BUT	BIGGER.	

The	duplicate	commands	gUgU	and	gugu	do	the	same	thing	as	other	duplicate	verbs,	
applying	the	upper/lower	case	operation	to	the	entire	line.	It’s	a	rather	annoying	sequence	
of	keypresses,	though,	so	it	is	probably	better	to	use	Visual	mode	(discussed	in	Chapter	8)	
to	select	a	line	with	V	and	then	apply	the	visual	mode	verbs	U	or	u.	

I	don’t	Qind	these	commands	very	useful.	I	more	frequently	use	the	~	command,	which	
inverts	the	case	of	the	character	under	the	cursor.	

Tip:	If	you	Qind	yourself	doing	a	lot	of	case	switching	work,	have	a	look	at	the	
coerce.nvim.	It	doesn’t	have	a	LazyVim	extra	so	you’ll	need	to	conQigure	it	yourself,	
but	it	can	be	worth	the	effort.	

Repea/ng Commands

LazyVim	doesn’t	have	multiple	cursor	mode.	There	are	plugins	to	support	multiple	cursors,	
but	in	my	experience	they	don’t	work	very	well.	Neovim	does	have	multiple	cursors	on	their	
roadmap,	so	I	am	hoping	they	will	come	up	with	a	paradigm	that	integrates	nicely	with	the	
Vim	mental	model.	

In	the	meantime,	Neovim	provides	several	different	tools	available	for	performing	an	action	
in	multiple	places	in	your	code.	We’ll	cover	basic	repetitions	here,	and	other	useful	
techniques	in	later	chapters.	

Once	you	have	performed	any	verb,	you	can	navigate	to	another	place	in	the	document	and	
repeat	that	verb	with	a	single	keypress:	.	(That’s	a	period,	although	you	will	usually	hear	it	
referred	to	as	“dot	repeat”	in	this	context).	

https://github.com/gregorias/coerce.nvim

This	highlights	why	d	and	c	need	to	be	separate	verbs,	as	opposed	to	using	something	like	
d<motion>i.	When	you	use	c,	the	delete	motion	and	the	text	you	inserted	is	remembered,	
so	you	can	repeat	the	entire	change	with	a	.	command.	For	example,	if	you	want	to	replace	
all	instances	of	a	variable	named	i	with	a	much	better	name	of	index,	you	could	jump	to	
the	Qirst	instance	of	i	and	type	clindex<Escape>	to	“change	one	character	to	index”.	Then	
you	can	use	Seek	mode	or	other	navigation	commands	to	go	to	the	next	use	of	i.	Now	just	
type	.	to	repeat	the	change	and	continue	to	the	next	instance.	

Like	motions	and	verbs,	the	.	command	can	be	given	a	count.	However,	counts	with	.	are	a	
little	bit	nuanced.	Rather	than	blindly	repeating	the	command	<count>	number	of	times,	it	
will	instead	replace	the	count	of	the	command	being	repeated.	

This	means	that	if	you	use	the	verb	3dd	to	delete	three	lines,	and	the	next	operation	you	
perform	is	2.	(“2	dot”),	the	second	operation	will	delete	two	lines,	rather	than	six.	

Recording Commands

Vim’s	command	recording	and	playback	system	is	extremely	powerful.	You	can	trivially	
record	an	arbitrary	sequence	of	navigation,	editing,	and	insertion	commands,	then	repeat	
that	sequence	on	demand	at	any	location	you	want.	

To	start	a	recording,	press	qq.	Sorry,	but	I	have	no	mnemonic	to	remember	q.	I	have	a	
feeling	it	was	just	the	last	available	key	on	the	keyboard!	

After	that,	type	whatever	sequence	of	navigation,	editing,	and	insertion	commands	you	
want	to	record.	Delete	words,	insert	text,	change	text,	search	for	words	(don’t	use	Seek	
mode,	as	the	replay	mechanism	will	have	no	idea	what	label	to	jump	to).	Virtually	anything	
you	can	do	in	Vim	(even	:	commands)	can	be	recorded	and	replayed	later.	

When	you	are	Qinished	recording,	just	press	q	again.	The	recording	will	be	stored	ready	for	
replay	whenever	you	desire.	

Appending to a recording

If	you	partially	complete	your	recording	and	then	realize	you	need	some	more	information	
or	need	to	make	an	edit	before	completing	the	recording,	you	can	stop	the	recording	using	q	
as	usual	and	do	the	thing	you	need	to	do.	

When	you	are	ready	to	continue	recording,	use	qQ	to	record	in	append	mode	instead.	The	
main	tip	here	is	that	you	need	to	make	sure	your	cursor	is	in	a	location	such	that	the	
merged	recording	will	make	sense.	This	usually	means	the	same	place	it	was	when	you	
stopped	recording,	although	it	may	depend	on	what	changes	you	made	in	the	meantime.	

Playing Back a Recording

The	easiest	and	fastest	way	to	play	back	your	most	recently	saved	recording	is	with	a	
capital	Q.	

It	is	possible	to	store	and	replace	multiple	recordings	at	once	using	registers	(a	stupid	name	
for	a	storage	location	that	harkens	back	to	humanity’s	dark	days	of	assembly	
programming).	I	will	go	into	more	detail	about	registers	in	a	later	chapter.	

Undo and Redo

Obviously,	these	are	the	most	important	operations	in	the	whole	book!	Use	the	u	key	to	
undo	your	most	recent	change.	Note	that	“most	recent	change”	can	be	a	pretty	big	whack	of	
text,	especially	if	you	haven’t	exited	Insert	mode	for	a	while.	For	example,	I	wrote	this	entire	
paragraph	in	one	Insert	session.	If	I	press	u	the	entire	paragraph	will	be	lost.	

That’s	ok,	though,	because	I	can	redo	using	Control-r.	Like	most	developers,	I	use	both	of	
these	extensively.	(Did	you	know	that	in	the	old	days	of	typewriters,	secretaries	had	to	get	
100%	accuracy	scores	on	their	typing	tests?	There	was	no	backspace	or	delete	key,	you	
see).	

Neovim	actually	does	an	amazing	job	of	keeping	track	of	your	entire	history,	rather	than	
just	the	most	recent	suite	of	changes.	So	if	you	make	a	bunch	of	changes	to	get	to	state	B,	
then	undo	to	state	A,	and	then	make	a	bunch	more	changes	to	get	to	state	C,	it	is	still	
possible	to	get	back	to	state	B	(ie:	back	out	of	the	C	changes	to	state	A	and	go	back	up	the	B	
changes	to	state	B).	

It’s	kind	of	the	same	concept	as	git	branches,	except	your	history	is	automatically	tracked	
for	every	keystroke	you	make.	Working	with	branches	of	undo	history	using	raw	Neovim	
commands	can	feel	pretty	clumsy,	though	(read	through	:help undo-branches	if	you’re	
brave).	Instead	I	recommend	conQiguring	and	installing	the	undotree	plugin.	

About	99.9%	of	the	time,	u	and	Control-r	will	be	all	you	need,	but	that	remaining	0.1%	
can	make	undotree	a	godsend	when	you	need	it.	

Summary

In	this	chapter,	we	expanded	our	understanding	of	the	Vim	mental	model,	and	then	
introduced	several	verbs	that	can	be	combined	with	the	navigation	motions	we	were	
already	familiar	with.	

We	discussed	a	grab-bag	of	other	editing	commands	before	covering	how	to	repeat	motions	
using	.	and	command	recordings.	Finally,	we	covered	undo	and	redo.	

https://github.com/jiaoshijie/undotree

In	the	next	chapter,	we’ll	learn	about	text	objects	and	some	additional	nuances	of	the	Vim	
mental	model	with	operator-pending	mode.	Combined,	these	allow	us	to	very	quickly	
perform	actions	on	a	huge	variety	of	code	concepts.	

Chapter 7: Objects and Operator-pending Mode

Chapter	7:	Objects	and	Operator-pending	Mode	-	LazyVim	for	Ambitious	Developers	

The	navigation	and	motion	commands	we’ve	learned	so	far	are	certainly	very	useful,	but	
Neovim	also	comes	with	several	more	advanced	motions	that	can	supercharge	your	editing	
workQlow.	LazyVim	further	amends	collection	of	motions	with	other	powerful	navigation	
capabilities	powered	by	a	variety	of	plugins.	

For	example,	if	you	are	editing	text	(as	I	am	right	now)	rather	than	source	code,	you	will	
Qind	it	useful	to	be	able	to	navigate	by	sentences	and	paragraphs.	A	sentence	is	basically	
anything	that	ends	with	a	.,	?,	or	!	followed	by	whitespace.	

The	sentence	keybindings	are	two	of	the	hardest	for	me	to	remember.	I	use	it	rarely	enough	
that	it	hasn’t	become	muscle	memory,	and	it	doesn’t	have	a	good	mnemonic	I	can	
remember.	

Have	I	built	enough	suspense?	Pay	attention,	because	you	will	forget	this.	To	move	one	
sentence	forward	(to	the	Qirst	letter	after	the	whitespace	following	sentence	ending	
punctuation),	type	a)	(right	parenthesis)	command	in	normal	mode.	To	move	to	the	start	
of	the	current	sentence,	use	(.	Press	the	parenthesis	again	to	move	to	the	next	or	previous	
sentence	or	add	count	if	you	want	to	move	by	multiple	sentences.	

I	hate	that	the	command	is	(since	that	feels	like	it	should	be	moving	to,	you	know,	a	
parenthesis!	But	it’s	not;	it’s	moving	by	sentences.	Since	the	.,	!,	and	?	characters	rarely	
mean	“sentence”	in	normal	software	development,	I	just	don’t	use	it	that	much	until	I	start	
writing	a	book	(something	I	keep	telling	myself	I	won’t	commit	to	again,	but	it	never	lasts).	

I	do	use	the	paragraph	motions	all	the	time,	though.	A	paragraph	is	deQined	as	all	the	
content	between	two	empty	lines,	and	that	is	a	concept	that	makes	sense	in	a	programming	
context.	Most	developers	structure	their	code	with	logically	connected	statements	
separated	by	blanks.	The	commands	to	move	up	or	down	by	one	“paragraph”	are	the	curly	
braces,	{	and	},	and	if	you	need	to	jump	multiple	paragraphs	ahead	or	back,	they	can,	as	
usual,	be	preQixed	by	a	count.	

Again,	you	might	expect	{	to	jump	to	a	curly	bracket,	so	it	is	a	bit	annoying	that	it	means	
“empty	line”	instead,	but	once	you	get	used	to	it,	you’ll	probably	reach	for	it	a	lot.	

Unimpaired Mode

LazyVim	provides	a	bunch	of	other	motions	that	can	be	accessed	using	square	brackets.	It	
will	take	a	while	to	internalize	them	all,	but	luckily,	you	can	get	a	menu	by	pressing	a	single	
[or].	Like	the	sentence	and	paragraph	motions,	the	square	brackets	allow	you	to	move	to	
the	previous	or	next	something,	except	the	something	depends	what	key	you	type	after	the	
square	bracket.	

Collectively,	these	pairs	of	navigation	techniques	are	sometimes	referred	to	as	“Unimpaired	
mode”,	as	they	harken	back	to	a	foundational	Vim	plugin	called	vim-unimpaired	by	a	
famous	plugin	author	named	Tim	Pope.	LazyVim	doesn’t	use	this	plugin	directly,	but	the	
spirit	of	the	plugin	lives	on.	

Here’s	what	I	see	if	I	type]	and	then	pause	for	the	menu:	

	

Not	all	of	these	are	related	to	navigation,	and	one	of	them	is	only	there	because	I	have	a	
Lazy	Extra	enabled	for	it.	We’ll	cover	the	motion	related	ones	here.	

First,	the	commands	to	work	with	(,	<,	and	{	are	quite	a	bit	more	nuanced	than	they	look.	
They	don’t	blindly	jump	to	the	next	(if	you	started	with])	or	previous	(if	you	used	[)	
parenthesis,	angle	bracket,	or	curly	bracket.	If	you	wanted	to	do	that,	you	could	just	use	
f(or	F(.	

Instead,	they	will	jump	to	the	next	unmatched	parenthesis,	angle	bracket,	or	curly	bracket.	
That	effectively	means	that	keystrokes	such	as	[(or]}	mean	“jump	out”.	So	if	you	are	in	
the	middle	of	a	block	of	code	surrounded	by	{}	you	can	easily	jump	to	the	end	of	that	block	
using]}	or	to	the	beginning	of	it	using	[{,	no	matter	how	many	other	curly-bracket	
delimited	code	blocks	exist	inside	that	object.	This	is	useful	in	a	wide	variety	of	
programming	contexts,	so	invest	some	time	to	get	used	to	it.	

As	a	shortcut,	you	can	also	use	[%	and]%	where	the	%	key	is	basically	a	placeholder	for	
“whatever	is	bracketing	me.”	They	will	jump	to	the	beginning	or	end	of	whichever	
parenthesis,	curly	bracket,	angle	bracket,	or	square	bracket	you	are	currently	in.	

https://github.com/tpope/vim-unimpaired

That	last	one	(square	bracket),	is	important,	because	unlike	the	others,	[[and]]	do	not	
jump	out	of	square	brackets,	so	using	[%	and]%	is	your	only	option	if	you	need	to	jump	out	
of	them.	

Jump by Reference

Instead	of	jumping	out	of	square	brackets	as	you	might	expect,	the	easy	to	type	[[and]]	
are	reserved	for	a	more	common	operation:	jumping	to	other	references	to	the	variable	
under	the	cursor	(in	the	same	Qile).	

This	feature	typically	leverages	the	language	server	for	the	current	language,	so	it	is	usually	
smarter	than	a	blind	search.	Only	actual	uses	of	that	function	or	variable	are	jumped	to	
instead	of	instances	of	that	word	in	the	middle	of	other	variables,	types,	or	comments	as	
would	happen	with	a	search	operation.	

As	an	added	bonus,	LazyVim	will	automatically	highlight	other	variable	instances	in	the	Qile	
so	you	can	easily	see	where]]	or	[[will	move	the	cursor	to.	

Jump by language features

The	[c,]c,	[f,]f,	[m,	and]m	keybindings	allow	you	to	navigate	around	a	source	code	Qile	
by	jumping	to	the	previous	or	next	class/type	deQinition,	function	deQinition,	or	method	
deQinition.	The	usefulness	of	these	features	depends	a	bit	on	both	the	language	you	are	
using	and	the	way	the	Language	Service	for	the	language	is	conQigured,	but	it	works	well	in	
common	languages.	

By	default,	those	keybindings	all	jump	to	the	start	of	the	previous	or	next	class/function/
method.	If	you	instead	want	to	jump	to	the	end,	just	add	a	Shift	keypress:	[C,]C,	[F,]f,	
[M,	and]M	will	get	you	there.	

Note	that	these	are	not	the	same	as	“jump	out”	behaviour:	if	you	have	a	nested	or	
anonymous	function	or	callback	deQined	inside	the	function	you	are	currently	editing,	
the]F	keybinding	will	jump	to	the	end	of	the	nested	function,	not	to	the	end	of	the	function	
after	the	one	you	are	currently	in.	

I	personally	don’t	use	these	keybindings	very	much	as	there	are	other	ways	to	navigate	
symbols	in	a	document	that	we	will	discuss	later.	But	if	you	are	editing	a	large	function	and	
you	want	to	quickly	jump	to	the	next	function	in	the	Qile,]f	is	probably	going	to	get	you	
there	faster	than	using	j	with	a	count	you	need	to	calculate,	or	even	a	Control-d	followed	
by	S	to	go	to	seek	mode.	

Jump to end of inden/on

If	you	are	working	with	indentation	based	code	such	as	Python	or	deeply	nested	tag-based	
markup	such	as	HTML	and	JSX	you	may	Qind	the	mini.indentscope	extra	helpful.	You	can	
install	it	by	visiting	:LazyExtras	and	searching	for	indentscope.	

This	plugin	provides	the	[i	and]i	pairs.	

LazyVim	is	conQigured	with	a	plugin	called	indent-blankline	which	helps	you	visualize	
the	levels	of	indentation	in	a	Qile.	Here’s	an	example	from	a	Svelte	component	I	was	working	
on	recently:	

	

This	Svelte	code	uses	two	spaces	for	indentation.	Each	level	of	indentation	has	a	(in	my	
theme)	grey	vertical	line	to	help	visualize	where	that	indentation	level	begins	and	ends,	and	
the	“current”	indentation	level	is	highlighted	in	a	higher	contrast	colour.	

If	I	enable	the	mini.indentscope	plugin,	these	lines	get	a	pretty	animation	when	I	move	
the	cursor.	More	importantly,it	adds	the	unimpaired	commands	[i	or]i	to	jump	out	of	the	
current	indentation	level	;	it	will	go	either	to	the	top	or	the	bottom	of	whichever	line	is	
currently	black.	

I	use	this	functionality	all	the	time	when	editing	Python	code	and	Svelte	components.	I	use	
it	less	often	in	other	languages	where	[%	and]%	tend	to	get	me	closer	to	where	I	need	to	go	
next.	But	the	visual	feedback	of	indent	guides	can	be	super	helpful,	even	in	bracket-heavy	
languages;	I	may	be	surprised	by	which	curly	bracket	I	will	“jump	out”	to,	but	the	indent	
guides	are	always	obvious.	

Jumping to diagnos/cs

I	don’t	know	about	you,	but	when	I	write	code,	I	tend	to	introduce	a	lot	of	errors	in	it.	
Depending	on	the	language,	LazyVim	is	either	preconQigured	or	can	be	conQigured	to	give	
me	plenty	of	feedback	about	those	errors,	usually	in	the	form	of	a	squiggly	underline	(If	you	
aren’t	seeing	squiggly	underlines,	go	back	to	Chapter	1	and	pick	a	better	terminal).	

These	squiggly	underlines	are	usually	created	by	integration	with	compilers,	type	checkers,	
linters	and	even	spell	checkers,	depending	on	the	language.	Some	of	them	are	errors,	some	
are	warnings,	some	are	hints.	Some	are	just	distractions,	but	most	of	them	are	
opportunities	to	improve	your	code.	

Because	I	am	so	incredibly	talented	at	introducing	problems	in	my	code,	a	common	
navigation	task	I	need	to	perform	is	“jump	to	the	next	squiggly	line”.	Collectively,	these	are	
referred	to	as	“diagnostics”,	so	the	key	combinations	are	[d	and]d.	If	you	only	want	to	
focus	on	errors	and	ignore	hints	and	warnings,	you	can	use	[e	and]e.	Analogously,	the	[w	
and]w	keybindings	navigate	between	only	warnings.	

Misspellings	can	be	found	with	[s	and]s.	This	tripped	me	up	when	I	started	this	book	
because	I	expected	the]d	to	take	me	to	the	squiggly	underlines	under	misspelled	words,	
but	it	doesn’t.	I	need]s	instead.	

Finally,	if	you	use	TODO	or	FIXME	comments	in	your	code,	you	can	jump	between	them	using	
[t	and]t.	

Note	that	unlike	most	of	the	previous]	and	[keybindings,	it	is	not	possible	to	combine	
diagnostic	jumps	with	a	verb.	So	d[d	will	not	delete	from	the	current	location	to	the	nearest	
diagnostic.	This	is	(probably)	just	an	oversight	in	how	LazyVim	deQines	the	keybindings.	

Jumping to git revisions

This	is	actually	my	favourite	of	the	square	bracket	pairs:	[h	and]h	allow	you	to	jump	to	the	
next	git	“hunk”.	If	you	aren’t	familiar	with	the	word	(or	if	you’re	from	a	generation	that	
thinks	it	means	a	gorgeous	man),	a	“git	hunk”	just	refers	to	a	section	of	a	Qile	that	contains	
modiQications	that	haven’t	been	staged	or	committed	yet.	

A	lot	of	my	editing	work	involves	editing	a	large	Qile	in	just	three	or	four	places.	For	
example,	I	might	add	an	import	at	the	top	of	the	Qile,	an	argument	to	a	function	call	
somewhere	else	in	the	Qile,	and	change	the	function	that	receives	that	argument	in	a	third	
place.	Once	I’ve	started	editing,	I	may	have	to	jump	back	and	forth	between	those	
locations.]h	and	[h	are	perfect	for	this,	and	I	don’t	need	to	remember	my	jump	history	or	
add	named	marks	(essentially	bookmarks)	to	do	it.	

Even	better,	LazyVim	gives	you	a	simple	visual	indicator	as	to	which	lines	in	the	Qile	have	
been	modiQied,	so	you	have	an	idea	where	it’s	going	to	jump.	Have	a	look	at	this	screenshot:	

	

On	the	left	side,	to	the	right	of	the	line	numbers,	you	can	see	a	green	vertical	bar	where	I	
inserted	two	lines,	an	orange	bar	where	I	changed	a	line,	and	a	small	red	arrow	indicating	
that	I	deleted	a	line.	(as	a	bonus,	it	also	shows	a	diagnostic	squiggly	and	a	red	x	to	the	left	of	
the	line	numbers	on	the	where	my	modiQication	introduced	the	error).	If	I	place	my	cursor	
at	the	top	of	the	Qile	and	type]h	three	times,	I	will	jump	between	those	three	places.	

Like	diagnostics,	[h	and]h	cannot	be	combined	with	a	verb.	

Text Objects

Combining	verbs	with	motions	is	very	useful,	but	it	would	often	be	more	helpful	to	combine	
those	same	verbs	with	objects	instead	of	motions.	Vim	comes	with	several	common	objects,	
such	as	words,	sentences	and	the	contents	of	parenthesis.	LazyVim	adds	a	ridiculous	pile	of	
other	text	objects.	

The	grammar	for	objects	is	<verb><context><object>.	The	verbs	are	the	same	verbs	you	
have	already	learned	for	working	with	motions,	so	they	can	be	d,	c,	gU,	etc.	

The	context	is	always	either	a	or	i.	As	you	know,	these	are	two	commands	to	enter	Insert	
mode	from	Normal	mode.	But	if	you	have	already	typed	a	verb	such	as	d	or	c,	you	are	
technically	not	in	Normal	mode	anymore!	

You	are	in	the	so-called	“Operator	Pending	Mode”.	The	navigation	keystrokes	you	are	
familiar	with	are	generally	also	allowed	in	operator	pending	mode,	which	is	the	real	reason	
you	can	perform	a	motion	after	a	verb.	But	if	a	plugin	maintainer	neglects	to	deQine	the	
operator-pending	keymaps,	you	end	up	with	situations	where	you	can	navigate	but	not	
perform	a	verb,	as	we	saw	with	git	hunks	and	diagnostics	above.	

It	doesn’t	make	sense	to	switch	to	Insert	mode	after	an	operator,	so	the	a	and	i	keystrokes	
mean	completely	different	things.	Typically,	you	can	think	of	them	as	around	and	inside	
(though	in	my	head	I	always	just	pronounce	them	as	“a”	and	“in”).	The	difference	is	that	a	
operations	tend	to	select	everything	that	inside	selects	plus	a	bit	of	surrounding	context	
that	depends	on	the	object	that	is	deQined.	

For	example,	one	common	object	is	the	parenthesis:	(.	If	you	type	the	command	di(,	you	
will	delete	all	the	text	inside	a	matched	pair	of	parenthesis.	But	if	you	instead	type	da(,	you	
will	delete	all	the	text	inside	the	parenthesis	as	well	as	the	(and)	at	each	end.	

To	see	a	list	of	all	possible	text	objects	in	LazyVim,	type	da	and	pause.	Here’s	what	I	see:	

	

Let’s	cover	(most	of)	these	in	detail	next.	

Textual objects

The	operators	w,	s,	and	p	are	used	to	perform	an	operation	on	an	entire	word,	sentence,	or	
paragraph,	as	deQined	previously:	word	is	contiguous	non-punctuation,	sentence	is	anything	
that	ends	in	a	.,	?,	or	!,	and	paragraph	is	anything	separated	by	two	newlines.	

The	difference	between	around	and	inside	contexts	with	these	objects	is	whether	or	not	
the	surrounding	whitespace	is	also	affected.	

For	example,	consider	the	following	snippet	of	text	and	imagine	my	cursor	is	currently	at	
the	|	character	in	the	middle	of	the	word	handful	in	the	second	sentence:	

This snippet contains a bunch of words. There are a hand|ful of	
sentences.	
	
And two paragraphs.	

If	I	want	to	delete	the	word	handful	while	I’m	at	that	character,	I	could	type	bde	to	jump	to	
the	back	of	the	word,	then	delete	to	the	end	of	the	word.	Or	I	can	use	the	inside word	text	
object	and	type	diw.	

Either	way,	I	end	up	with	an	extra	space	between	a	and	of	because	diw	is	inside	the	word	
and	doesn’t	touch	surrounding	whitespace.	

If	I	instead	type	daw,	it	will	delete	the	word	and	one	surrounding	space	character,	so	
everything	lines	up	correctly	afterward	with	a	single	space	between	a	and	of.	

There	is	also	a	W	(capitalized)	operator	that	has	a	similar	meaning	to	the	captial	W	when	
navigating	by	words:	It	will	delete	everything	between	two	whitespaces	instead	of	
interpreting	punctuation	as	a	word	boundary.	

Similarly,	I	can	use	dis	and	das	from	that	same	cursor	position	to	delete	the	entire	“There	
are	a	handful	of	sentences.”	sentence.	The	former	won’t	touch	any	of	the	whitespace	before	
The	or	after	the	.,	while	the	latter	will	sync	up	the	whitespace	correctly.	

Finally,	I	can	delete	the	entire	paragraph	with	dip	or	dap.	The	difference	is	that	in	the	
former	case,	the	blank	line	after	the	paragraph	being	deleted	will	still	be	there,	but	in	
around	mode,	it	will	remove	the	extra	blank.	

Typically,	I	use	i	when	I	am	changing	a	word,	sentence	or	paragraph,	with	a	c	verb,	since	I	
want	to	replace	it	with	something	else	that	will	need	to	have	surrounding	whitespace.	But	I	
use	a	when	I	am	deleting	the	textual	object	with	d	because	I	don’t	intend	to	replace	it,	so	I	
want	the	whitespace	to	behave	correctly	as	if	that	object	never	existed.	

Quotes and Brackets

The	operators	",	',	and	`	operate	on	a	string	of	text	surrounded	with	double	quotes,	single	
quotes	or	backticks.	If	you	use	the	commandci",	you	will	end	up	with	your	cursor	in	Insert	
mode	between	two	quotation	marks,	where	everything	inside	the	string	was	removed.	If	
you	use	da",	however,	it	will	delete	the	quotation	marks	as	well.	

As	a	shortcut,	you	can	use	the	letter	q	as	a	text	object	and	LazyVim	will	Qigure	out	what	the	
nearest	quotation	mark	is,	whether	single,	double,	or	backtick,	and	delete	that	object.	I	
don’t	use	this,	personally,	but	I	guess	it	would	save	a	keypress	on	double	quotes.	

Similarly	if	you	want	to	apply	a	verb	to	an	entire	block	contained	in	parenthesis	or	curly,	
angle,	or	square	brackets,	you	just	have	to	type	one	of	those	bracketing	characters.	
Consider,	these	examples:	di[,	da(,	ci{	or	ca<.	As	with	quotes,	the	i	versions	will	leave	the	
surrounding	brackets	intact,	and	the	a	version	will	delete	the	whole	thing.	

The	shortcut	to	select	whatever	the	nearest	enclosing	bracket	or	parenthesis	type	is	is	the	b	
object.	(Mnemonic	is	“bracket”).	

These	actually	work	with	counts	so	you	can	delete	the	“third	surrounding	curly	brackets”	
instead	of	the	“nearest	surrounding	curly	brackets”	if	you	want	to.	I	can	never	remember	
where	to	put	the	count,	though!	If	your	memory	is	better	than	mine,	the	syntax	is	to	place	
the	count	before	the	a	or	i.	So	for	example,	d2a{	will	delete	everything	inside	the	second-
nearest	set	of	curly	brackets.	I’m	not	sure	if	that	makes	sense,	so	here’s	a	visual:	

class Foo {	
 function bar() {	
 let obj = {fizz: 'buzz'}	
 }	
}	

If	my	cursor	is	on	the	colon	between	fizz	and	'buzz'	then	you	can	expect	the	following	
effects:	

• di{	will	delete	fizz: 'buzz'	but	leave	the	surrounding	curly	brackets.	
• c2i{	will	remove	the	entire	let obj =	line	and	leave	my	cursor	in	Insert	mode	

inside	the	curly	brackets	deQining	the	function	body.	
• c2a{	will	do	the	same	thing,	but	also	remove	those	curly	brackets,	so	I’m	left	with	a	

function bar()	that	has	no	body.	
• d3i{	will	remove	the	entire	function	and	leave	me	with	an	empty	Foo	class.	

You	can	also	delete	things	between	certain	pieces	of	punctuation.	For	example,	ci*	and	ca_	
are	useful	for	replacing	the	contents	of	text	marked	as	bold	or	italic	in	markdown	Qiles.	

If	you	want	to	operate	on	the	entire	buffer,	use	the	ag	or	ig	text	object.	So	cag	is	the	
quickest	way	to	scrap	everything	and	start	over	and	yig	will	copy	the	buffer	so	you	can	
paste	it	into	a	pastebin	or	chatbot.	The	g	may	seem	like	an	odd	choice,	but	it	has	a	
symmetry	to	the	fact	that	gg	and	G	jump	to	the	beginning	or	end	of	the	Qile.	If	you	need	a	
mnemonic,	think	of	yig	as	“yank	in	global”.	

Language features

LazyVim	adds	some	helpful	operators	to	perform	a	command	on	an	entire	function	or	class	
deQinition,	objects,	and	(in	html	and	JSX),	tags.	These	are	summarized	below:	

• c:	Act	on	class	or	type	
• f:	Act	on	function	or	method	
• o	Act	on	an	“object”	(the	mnemonic	is	a	stretch)	such	as	blocks,	loops,	or	

conditionals	
• t	Act	on	a	HTML-like	tag	(works	with	JSX)	
• i	Act	on	a	“scope”,	which	is	essentially	an	indentation	level	(only	available	if	the	

aforementioned	mini.indentscope	extra	is	installed)	

Git Hunks

Remember	the	git	hunks	we	discussed	in	unimpared	mode?	You	can	act	on	an	entire	hunk	
with	the	h	object.	So	one	way	to	quickly	revert	an	addition	is	to	just	type	dih.	But	you	
probably	won’t	do	this	much	as	there	are	better	ways	to	deal	with	git,	as	we	will	discuss	in	
Chapter	15.	

Next and last text object

The	text	object	feature	is	great	if	you	are	already	inside	the	object	you	want	to	operate	on,	
but	LazyVim	is	conQigured	(using	a	plugin	called	mini.ai)	so	that	you	can	even	operate	on	
objects	that	are	only	near	your	cursor	position.	

Once	installed,	the	next	and	last	text	objects	can	be	accessed	by	preQixing	the	object	you	
want	to	access	with	a	l	or	n.	

Consider	the	Foo.bar	Javascript	class	again:	

class Foo {	
 function bar() {	
 let obj = {fizz: 'buzz'}	
 }	
}	

If	my	cursor	is	on	the	o	of	the	let obj	line,	I	can	type	cin{	to	delete	the	contents	of	the	
fizz: 'buzz'	object	and	place	my	cursor	there	in	insert	mode.	I	can	save	myself	an	entire	
navigation	with	just	one	extra	n	keystroke.	I	think	this	is	a	really	neat	feature,	but	I	tend	to	
forget	it	exists…	Hopefully	writing	about	it	here	will	help	me	remember!	

Seeking Surrounding Objects

The	flash.nvim	plugin	that	gave	us	Seek	mode,	has	another	trick	up	it’s	sleeve:	the	holy	
grail	of	text	objects.	After	specifying	a	verb,	you	can	use	the	S	key	(there	is	no	i	or	a	
required)	to	be	presented	with	a	bunch	of	paired	labels	around	the	primary	code	objects	
surrounding	your	cursor.	

As	an	example,	I’m	going	to	lean	on	that	Foo	class	again.	I	have	placed	my	cursor	on	the	:	
and	typed	cS.	The	plugin	identiQies	the	various	objects	surrounding	my	cursor	and	places	
labels	at	both	ends	of	each	object:	

	

The	labels	in	this	image	are	in	green,	and	(typically)	go	in	alphabetical	order	from	
“innermost”	to	“outermost”.	The	primary	difference	from	Seek	mode	is	that	each	label	
comes	in	pairs;	there	are	two	a	labels,	two	b	labels,	and	so	on.	The	text	object	is	whatever	is	
between	those	labels.	

If	the	next	character	I	press	is	a	(or	enter,	to	accept	the	default),	then	I	will	change	
everything	inside	the	curly	brackets	deQining	the	obj.	If	I	press	b,	it	will	also	replace	those	
curly	brackets.	Pressing	c	will	change	the	entire	assignment	and	d	will	change	the	contents	
of	the	function.	Hitting	e	replaces	the	curly	brackets	as	well,	and	f	changes	the	full	function	
deQinition.	The	g	label	is	the	contents	of	the	class,	while	h	changes	the	entire	class.	

This	is	a	super	useful	tool	when	you	need	to	change,	delete,	or	copy	a	complex	structure	
that	does	not	immediately	map	to	any	of	the	other	objects.	

Seeking Surrounding Objects Remotely

The	S	Operator-pending	mode	is	useful	for	acting	on	objects	that	surround	the	cursor,	but	if	
your	cursor	isn’t	currently	within	the	object	you	want	to	select,	it	won’t	sufQice.	You	could	
use	s	to	navigate	to	inside	the	object	followed	by	S	to	select	it,	but	you	can	save	yourself	a	
few	keystroke	by	instead	using	the	R	operator.	

With	a	mnemonic	of	“Remote”,	R	is	easy	to	use,	but	hard	to	explain.	It	is	an	operator-
pending	operation,	so	you	need	to	type	a	verb,	Qirst,	followed	by	R	(as	with	S	,	there	is	no	i	
or	a)	required.	

At	this	point,	LazyVim	is	essentially	in	Seek	mode,	so	you	can	type	a	few	characters	from	a	
search	string	to	Qind	matches	anywhere	on	the	screen.	However,	instead	of	showing	a	single	
label	at	any	matches	for	the	string	you	searched	for,	flash.nvim	will	automatically	switch	
to	surrounding	object	mode,	and	show	pairs	of	labels	of	all	constructs	that	surround	the	
matching	locations.	

To	put	the	icing	on	the	cake,	you	can	also	perform	a	remote	seek	on	any	kind	of	object	
without	using	the	surround	mode.	In	this	case,	you	would	type	a	verb	followed	by	a	
lowercase	r	(it	still	means	“remote”).	This	will	also	put	you	in	Seek	mode,	and	you	can	start	
typing	the	matching	characters.	Single	(normal	Seek	mode,	rather	than	Surround	Seek	
mode)	labels	will	pop	up,	and	you	can	enter	a	character	to	temporarily	move	your	cursor	to	
that	label,	just	like	normal	Seek	mode.	But	when	your	cursor	arrives	there,	it	is	
automatically	placed	in	Operator-pending	mode	again.	So	you	can	now	type	any	other	
operator	such	as	aw	or	i(.	Once	the	operation	completes,	your	cursor	will	move	back	to	
where	it	was	before	you	entered	the	remote	seek	mode.	

As	a	speciQic	example,	the	command	drAth2w	will	delete	two	words	starting	at	the	word	
“At”	that	gets	the	label	h,	then	jump	your	cursor	back	to	the	position	it	was	at	before	you	
started	the	delete.	In	other	words,	it	is	the	same	as	the	command	sAthd2w<Control-o>,	
which	will	seek	to	the	word	“At”	at	label	h,	then	delete	two	words,	and	use	Control-o	to	
jump	back	to	your	previous	history	location.	The	remote	command	is	a	little	shorter,	but	it’s	
another	one	that	I	tend	to	forget	to	use.	My	brain	goes	into	“move	the	cursor”	mode	before	
it	Qigures	out	“delete”	mode,	so	by	the	time	I	realize	I	could	have	done	it	remotely,	it’s	too	
late.	

Opera/ng on surrounding pairs

We’ve	already	seen	the	text	objects	to	operate	on	the	contents	of	pairs	of	quotation	marks	
or	brackets,	but	what	if	you	want	to	keep	the	content	but	change	the	surrounding	pair?	

Maybe	you	want	to	change	a	double	quoted	string	such	as	"hello world"	to	a	single	
quoted	'hello world'.	Or	maybe	you	are	changing	a	obj.get(some_variable)	method	
lookup	to	a	obj[some_variable]	index	lookup,	and	need	to	change	the	surrounding	
parenthesis	to	square	brackets.	

LazyVim	ships	with	the	mini.surround	plugin	for	this	kind	of	behaviour,	but	it’s	not	
installed	by	default.	It	is	a	recommended	extra,	so	if	you	followed	my	suggestion	to	enable	
all	the	recommended	extras,	you	may	have	it	already.	The	keybindings	for	this	

“surrounding”	mode	kind	of	violate	the	Vim	mental	model,	in	my	opinion,	but	I’ll	teach	you	
the	default	keybindings	Qirst,	then	show	you	how	to	change	them.	

Adding surrounding pair

The	default	verb	for	adding	a	surrounding	pair	is	gsa.	That	will	place	your	editor	in	
operator-pending	mode,	and	you	now	have	to	type	the	motion	or	text	object	to	cover	the	
text	you	want	to	surround	with	something.	Once	you	have	Qinished	inputting	that	object,	
you	need	to	type	the	character	you	want	to	surround	it	with,	such	as	"	or	(or).	The	
difference	between	the	latter	two	is	that,	while	both	will	surround	the	text	with	
parentheses,	the	(will	also	put	extra	spaces	inside	the	parentheses.	

That	may	sound	complicated,	but	it	should	make	sense	after	you	see	some	examples:	

• gsai[(will	select	the	contents	of	a	set	of	square	brackets	(using	i[)	and	place	
parentheses	separated	by	spaces	inside	the	square	brackets.	So	if	you	start	with	
[foo bar]	and	type	gsai[(,	you	will	end	up	with	[(foo bar)].	

• gsai[)	does	the	same	thing,	except	there	are	no	spaces	added,	so	the	same	[foo
bar]	will	become	[(foo bar)].	

• gsaa[)	will	place	the	parentheses	outside	the	square	brackets,	because	you	selected	
with	a[instead	of	i[.	So	this	time,	our	example	becomes	([foo bar]).	

• gsa$"	will	surround	all	the	text	between	the	current	cursor	position	and	the	end	of	
the	line	with	double	quotation	marks.	

• gsaSb'	will	surround	the	text	object	that	you	select	with	the	label	b	after	an	S	
operation	with	single	quotation	marks.	

• gsaraa3e*	will	surround	the	remote	object	that	starts	with	a	that	is	labelled	with	
an	a	followed	by	the	next	three	words	with	an	asterisk	at	each	end	of	the	three	
words.	

Depending	on	the	context	it	can	be	a	lot	of	characters	to	type,	but	it’s	typically	fewer	
characters	than	navigating	to	and	changing	each	end	of	the	pair	independently.	

Delete surrounding pair

Deleting	a	pair	is	a	little	easier,	as	you	don’t	need	to	specify	a	text	object.	Just	use	gsd	
followed	by	the	indicator	of	whichever	pair	you	want	to	remove.	

So	if	you	want	to	delete	the	[]	surrounding	the	cursor,	you	can	use	gsd[.	

If	you	want	to	delete	deeply	nested	elements,	you	need	to	put	the	count	before	the	verb.	So	
use	2gsd{	to	delete	the	second	set	of	curly	braces	outside	your	current	cursor	position.	As	
a	speciQic	example,	if	your	cursor	is	inside	the	def	of	the	string	{abc {def}},	type	

2gsd{	will	result	in	abc {def},	leaving	the	“inner”	curly	braces	around	def,	but	removing	
the	second	outer	set	around	the	whole.	

Replace surrounding pair

Replacing	is	similar	to	deleting,	except	the	verb	is	gsr	and	you	need	to	type	the	character	
you	want	to	replace	the	existing	character	with	after	you	type	the	existing	character.	

So	if	you	have	the	text	"hello world"	and	your	cursor	is	inside	it,	you	can	use	gsr"'	to	
change	the	double	quotes	to	single	quotes:	'hello world'.	

Navigate surrounding characters

Performing	operations	on	surrounding	pairs	or	on	the	entire	contents	of	the	pair	is	
convenient,	but	sometimes	you	just	want	to	move	your	cursor	to	the	beginning	or	end	of	
the	pair.	You	can	often	do	this	using	Seek	mode,	Find	mode	(e.g	f)	will	jump	to	the	nearest	
closing	parenthesis)	or	the	Unimpaired	mode	commands	such	as	[(,	but	there	are	other	
commands	that	are	more	syntax	aware	if	you	need	them.	

The	easiest	one	has	been	built	into	Vim	for	a	long	time.	If	your	cursor	is	currently	on	the	
beginning	or	ending	character	of	a	parenthesis,	bracket,	or	curly	brace	pair,	just	hit	%	to	
jump	to	its	mate	at	the	other	end	of	the	selection.	If	you	use	%	in	Normal	mode	when	you	
aren’t	on	a	pair,	it	will	jump	to	the	nearest	enclosing	pair-like	object.	This	only	works	with	
brackets,	though,	so	arbitrary	pairs	including	quotes	are	not	supported.	

The	mini.pairs	plugin	comes	with	gsf	and	gsF	keybindings,	which	can	be	used	to	move	
your	cursor	to	the	character	in	question.	I	don’t	use	these	much	(too	much	typing!),	and	the	
mini.ai	plugin	that	provides	a	similar	feature	using	the	g[and	g]	shortcuts.	These	
shortcut	need	to	be	followed	by	a	character	type,	so	e.g.	g[(will	jump	back	to	the	nearest	
surrounding	open	parenthesis,	and	g]]	will	jump	to	the	nearest	closing	square	bracket.	If	
you	give	it	a	count,	it	will	jump	out	of	that	many	surrounding	pairs.	

Highligh/ng surrounding characters

If	you	just	need	to	double	check	where	the	surrounding	characters	are,	you	can	use	
something	like	gsh(,	where	h	would	mean	“highlight”.	This	can	sometimes	be	used	as	a	dry	
run	for	a	delete	or	replace	operation	that	is	using	counts	so	you	can	double	check	that	you	
are	operating	on	the	pairs	you	think	you	are.	

Bonus: XML or HTML Tags

The	surround	plugin	is	mostly	for	working	with	pairs	of	characters,	but	it	can	also	operate	
on	html-like	tags.	

Say	you	have	a	block	text	and	you	want	to	surround	it	with	p	tags.	String	together	the	
command	gsaapt	(For	additional	fun,	try	pronouncing	it).	That	is	gsa	for	“add	
surrounding”	followed	by	ap	for	“around	paragraph.	So	we’re	going	to	add	something	
around	a	paragraph.	Instead	of	a	quote	or	bracket,	we	say	the	thing	we	are	going	to	add	is	a	
t	for	tag.	

mini.surround	will	understand	that	you	want	to	add	a	tag,	and	pop	up	a	little	prompt	
window	to	enter	the	tag	you	want	to	add.	Type	the	p	for	the	tag	you	want	to	create.	You	
don’t	need	angle	brackets;	just	the	tag	name:	

	

If	the	tag	you	want	to	add	has	attributes,	you	can	add	them	to	the	menu.	mini.surround	is	
smart	enough	to	know	that	the	attributes	only	go	on	the	opening	tag.	

	

Modifying the keybindings

I	love	the	surround	behaviour.	I	use	it	a	lot.	So	much	that	I	quickly	got	tired	of	typing	gs	
repeatedly.	I	decided	to	replace	the	gs	with	a	;	so	I	can	instead	type	;d	or	;r	instead	of	gsd	
or	gsr.	For	adding	surrounds,	I	decided	to	leverage	the	fact	that	double	keypresses	are	easy	
to	type,	so	I	used	;;	for	that	action	instead	of	gsa	or	even	;a.	

In	order	for	this	to	work	correctly,	I	also	had	to	modify	the	flash.nvim	conQiguration	to	
remove	the	;	command.	(By	default	the	;	key	can	be	used	as	a	“Qind	next”	behaviour	for	the	
f	and	t	keys,	but	the	way	Qlash	is	designed,	you	don’t	need	a	separate	key	for	it;	just	press	f	
or	t	again).	

If	you	want	to	do	the	same	thing,	just	create	a	new	lua	Qile	named	whatever	you	want	(mine	
is	extend-mini-surround.lua)	inside	the	config/plugins	directory.	

The	contents	of	the	Qile	will	be:	

return {	
 {	
 "echasnovski/mini.surround",	
 opts = {	

 mappings = {	
 add = ";;",	
 delete = ";d",	
 find = ";f",	
 find_left = ";F",	
 highlight = ";h",	
 replace = ";r",	
 update_n_lines = ";n",	
 },	
 },	
 },	
	
 {	
 "folke/flash.nvim",	
 opts = {	
 modes = {	
 char = {	
 keys = { "f", "F", "t", "T" },	
 },	
 },	
 },	
 },	
}	

Since	we	are	modifying	two	plugins,	I	put	them	inside	a	Lua	table,	which	lazy.nvim	is	
smart	enough	to	parse	as	multiple	plugin	deQinitions.	The	Qirst	of	these	passes	mappings	to	
the	opts	that	are	passed	into	mini.surround.	These	will	replace	the	default	keybindings	
that	LazyVim	has	deQined	for	that	table	(the	ones	that	start	with	gs).	

The	second	deQinition	also	passes	a	custom	opts	table.	It	replaces	the	default	keys,	which	
include	;	and	,	with	a	new	table	that	only	deQines	f,	F,	t,	and	T.	

Tip:	If	I	had	known	that	;	was	being	rebound	by	flash.nvim,	I	could	have	found	
this	solution	by	reading	the	conQig	for	flash.nvim	on	the	LazyVim	website	and	
seeing	what	needed	to	be	overwritten.	However	I	wasn’t	able	to	Qigure	out	where	
the	;	was	being	deQined,	and	ended	up	asking	for	help	on	the	LazyVim	Github	
Discusions.	People	are	really	helpful	there,	and	I	encourage	you	to	come	say	hello	
if	you	have	any	questions.	

https://www.lazyvim.org

Summary

In	this	chapter,	we	learned	a	bunch	of	advanced	code	motion	techniques	that	LazyVim	gives	
us	by	its	reimplementation	of	Unimpaired	mode.	Then	we	learned	what	TextObjects	are	and	
took	in	a	crash	course	on	the	many,	many	text	objects	LazyVim	provides.	

We	then	covered	the	exceptionally	useful	S	motion,	which	can	be	used	to	pick	text	objects	
on	the	Qly,	as	well	as	the	remote	variation	of	S	and	s	

We	wrapped	up	by	going	over	several	new	verbs	that	can	be	used	to	work	with	surrounding	
pairs	of	texts	such	as	parenthesis,	brackets,	and	quotes.	

In	the	next	chapter,	we’ll	cover	clipboard	interactions	and	registers,	as	well	as	an	entire	new	
Visual	mode	that	can	be	used	for	text	selection.	

Chapter 8: Clipboard, Registers, and Selec/on

Chapter	8:	Clipboard,	Registers,	and	Selection	-	LazyVim	for	Ambitious	Developers	

Vim	has	a	robust	copy	and	paste	experience	that	predates	the	operating	system	clipboard	
you	are	used	to	in	other	editors.	Happily,	the	LazyVim	conQiguration	sets	up	the	Neovim	
clipboard	system	to	work	with	the	OS	clipboard	automatically.	

In	fact,	you	already	know	how	to	cut	text	to	the	system	clipboard:	Just	delete	it.	

That’s	right.	Any	time	you	use	the	d	or	c	verb,	the	text	that	you	deleted	is	automatically	cut	
to	clipboard.	This	is	usually	very	convenient,	and	occasionally	somewhat	annoying,	so	I’ll	
show	you	a	workaround	to	avoid	saving	deleted	text	later	in	this	chapter.	

Pas/ng text

Pasting	(typically	referred	to	as	“putting”	in	Vim)	text	uses	the	p	command	which	I	
mentioned	brieQly	in	Chapter	1.	In	Normal	mode,	the	single	command	p	will	place	whatever	
is	in	the	system	clipboard	at	the	current	cursor	position.	This	is	usually	the	text	you	most	
recently	deleted,	but	it	can	be	an	URL	you	copied	from	the	browser	or	text	copied	from	an	
e-mail	or	any	other	system	clipboard	object.	

The	position	of	the	text	you	inserted	can	be	somewhat	surprising,	but	it	usually	does	what	
you	want.	Normally,	if	you	deleted	a	few	words	or	a	string	that	is	not	an	entire	line,	it	goes	

immediately	after	the	current	cursor	position.	However,	if	you	used	a	command	that	
operates	on	an	entire	line,	such	as	dd	or	cc	to	delete	an	entire	line,	the	text	will	be	placed	
on	the	next	line.	This	saves	a	few	keystrokes	when	you	are	working	with	line-level	edits,	a	
common	task	in	code	editing.	

The	p	command	can	be	used	with	a	count,	so	in	the	unlikely	event	you	want	to	paste	5	
consecutive	copies	of	whatever	is	in	the	clipboard,	you	can	use	5p.	

When	you	paste	with	p,	your	cursor	will	stay	where	it	was,	and	the	text	is	inserted	after	the	
cursor.	If	you	want	to	instead	paste	the	text	before	the	current	cursor	position,	use	a	capital	
P,	where	the	shifting	action	is	interpreted	as	“do	p	in	the	other	direction.”	As	with	p,	the	text	
will	be	inserted	directly	before	the	cursor	position	unless	it	was	a	line-level	edit	such	as	dd,	
in	which	case	it	will	be	placed	on	the	previous	line.	

If	you	are	already	in	Insert	mode	and	need	to	paste	something	and	keep	typing,	you	can	use	
the	Control-r	command,	followed	by	the	+	key.	The	r	may	be	hard	to	remember,	but	it	
stands	for	“register,”	and	we’ll	go	into	more	detail	about	what	registers	really	are,	soon.	

Copying Text

Copying	text	requires	a	new	verb:	y.	It	behaves	similarly	to	d	and	c,	except	it	doesn’t	modify	
the	buffer;	it	just	copies	the	text	deQined	by	whatever	motion	or	text	object	comes	after	the	
y.	

“Why	y?”	you	might	ask?	It	stands	for	“yank”,	which	is	Vim	speak	for	“copy.”	I	have	no	idea	
why	vi	called	it	“yank,”	but	my	guess	is	that	it	was	a	reverse	acronym.	The	original	authors	
probably	noticed	that	y	was	currently	free	on	the	keyboard	and	decided	to	come	up	with	a	
word	that	matches	it.	The	concept	of	a	clipboard	or	copy/paste	had	not	been	standardized	
yet,	so	they	were	free	to	use	whatever	terminology	worked	for	them.	

The	y	command	works	with	all	of	the	motions	and	text	objects	you	already	know.	It	is	
especially	useful	with	the	r	and	R	Remote	Seek	commands.	If	you	need	to	copy	text	from	
somewhere	else	in	the	editor	(even	a	different	Qile)	to	your	current	cursor	location,	
yR<search><label>p	is	the	quickest	way	to	be	on	your	way	without	adding	unnecessary	
jumps	to	your	history.	

The	yy	and	Y	commands	yank	an	entire	line,	and	from	the	cursor	to	the	end	of	the	line,	
analogous	to	their	counterparts	when	deleting	and	changing	text.	

LazyVim	will	brieQly	highlight	the	text	you	yanked	to	give	a	nice	indicator	as	to	whether	
your	motion	command	copied	the	correct	text.	

Selec/ng Text First

Your	Vim	editing	experience	so	far	has	not	involved	the	concept	of	selecting	text.	Isn’t	that	
weird?	In	normal	word	processors	and	VS	Code-like	text	editors,	you	have	to	select	text	
before	you	can	perform	an	operation	such	as	deleting,	copying,	cutting,	or	changing	it.	
Considering	how	awkward	text	selection	is	in	those	editors	(you	have	to	use	your	mouse	or	
some	combination	of	shift,	and	cursor	movements,	with	extra	modiQier	keys	to	make	bigger	
movements),	it’s	amazing	anyone	gets	anything	done!	

In	Vim-land,	you	normally	perform	the	verb	Qirst	and	follow	up	with	a	text	motion	or	object	
to	implicitly	select	the	text	before	manipulating	it.	This	is	usually	the	most	effective	way	to	
operate,	but	in	some	situations	it	is	convenient	to	invert	the	mental	model	and	highlight	
text	before	operating	on	it.	

This	is	where	Visual	mode	comes	in.	Visual	mode	is	a	Vim	major	mode,	like	Normal	and	
Insert	mode.	Technically,	there	are	three	sub-modes	of	Visual	mode.	We’ll	start	with	“visual	
character	mode”	and	dig	into	the	other	two	shortly.	

To	enter	Visual	character	mode,	use	the	v	command	from	normal	mode.	Then	move	the	
cursor	using	most	of	the	motions	that	you	are	used	to	from	normal	mode.	I	say	“most”	only	
because	Visual	mode	keymaps	are	independent	of	normal	mode	keymaps,	and	plugins	
occasionally	neglect	to	set	them	up	for	both	modes.	LazyVim	is	really	good	about	keymaps,	
though,	so	you	will	rarely	be	surprised.	

Tip:	You	can	also	get	into	Visual	mode	by	clicking	and	dragging	with	your	mouse.	

Once	you	have	text	selected	in	visual	mode,	you	can	use	the	same	verbs	you	usually	use	to	
delete,	change,	or	yank	the	selection.	You	can	even	use	single	character	verbs	like	x	(which	
does	the	same	thing	as	d)	or	r	to	replace	all	the	characters	with	the	same	character.	After	
you	complete	the	verb,	the	editor	automatically	switches	back	to	Normal	mode.	You	can	
also	exit	visual	mode	without	performing	an	action	using	Escape	or	another	v.	

You	can	exit	Visual	mode	temporarily	without	completely	losing	your	selection.	From	
Normal	mode,	use	the	gv	(“go	to	old	visual	selection”)	command	to	return	to	the	selection.	
This	is	useful	if	you	are	about	to	perform	a	visual	operation	and	realize	you	need	to	look	
something	up,	make	edits,	or	copy	something	from	elsewhere	in	the	Qile,	then	go	back	to	the	
selection.	

Use	the	o	(for	“other	end”)	command	to	move	the	cursor	to	the	opposite	end	of	the	block.	
Useful	if	e.g.	you’ve	selected	a	few	words,	and	realize	you	forgot	one	at	the	other	end	of	the	
block.	You	can’t	get	into	Insert	mode	from	visual	mode,	so	the	o	command	gets	reused	for	
this	purpose.	

Line-wise Visual Mode

The	v	command	is	useful	for	Qine-grained	selections,	but	if	you	know	that	your	selection	is	
going	to	start	and	end	on	line	boundaries,	you	can	use	a	(shifted)	V	instead,	to	get	into	line-
wise	visual	mode.	Now	wherever	you	move	the	cursor,	the	entire	line	the	cursor	lands	on	
will	be	selected.	

Other	than	selecting	entire	lines,	the	main	difference	with	Line-wise	Visual	mode	is	that	
when	you	apply	a	verb	that	manipulates	the	clipboard,	(including	d,	c,	and	y),	the	lines	will	
be	cut	or	copied	in	line-wise	mode.	When	you	put	them	again	they	will	show	up	on	the	next	
or	previous	line	instead	of	immediately	before	the	cursor.	

Block-wise Visual Mode

Blockwise	Visual	mode	is	a	neat	feature	that	is	kind	of	unique	to	Vim.	It	allows	you	to	
visually	select	and	manipulate	a	block	of	text	that	is	vertically,	but	not	horizontally	
contiguous.	For	example,	I	have	selected	several	characters	on	each	of	four	separate	lines	in	
the	following	screenshot:	

	

To	enter	block-wise	visual	mode,	use	CTRL-v	instead	of	v	or	V	for	visual	and	line-wise	
visual	mode.	

In	plain	text	like	this,	Visual	Block	mode	doesn’t	appear	to	be	very	useful,	but	it	is	handy	if	
you	need	to	cut	and	paste	columns	of	tabular	data	in	a	csv	Qile	or	markdown	table,	for	
example.	I	don’t	use	it	for	that	functionality	terribly	often,	but	when	I	need	it,	I	know	there	
is	no	other	way	to	efQiciently	perform	the	action	I	need.	

Tip:	If	you	use	Control-V$,	you	will	get	a	slight	adaptation	of	Visual	Block	Mode	
where	the	block	extends	to	the	end	of	each	line,	in	the	block.	This	is	handy	if	you	
need	the	block	to	extend	to	the	longest	line	as	opposed	to	the	line	your	cursor	is	
currently	on.	

Visual	Block	Mode	can	also	be	used	as	a	(poor)	imitation	of	multiple	cursors.	If	you	use	the	
I	or	A	command	after	selecting	a	visual	block,	and	then	enter	some	text	followed	by	
Escape,	the	text	you	entered	will	get	copied	at	either	the	beginning	or	end	of	the	visual	

block.	A	common	operation	for	this	feature	is	to	add	*	characters	at	the	beginning	of	
Markdown	ordered	lists	or	a	block	comment	that	needs	a	frame.	

Registers

Registers	are	a	way	to	store	a	string	of	text	to	be	accessed	later	(so	think	of	the	Assembly-
language	deQinition	of	the	word).	In	that	regard,	they	are	no	different	from	a	clipboard.	In	
fact,	the	system	clipboard	in	Vim	is	a	register	that	LazyVim	has	set	up	as	the	default	
register.	

But	Vim	has	dozens	of	other	registers.	This	means	you	can	have	custom	clipboards	that	each	
contain	totally	different	sequences	of	text.	This	feature	is	pretty	useful,	for	example,	when	
you	are	refactoring	something	and	need	to	paste	copies	of	several	different	pieces	of	text	at	
multiple	call	sites.	

There	are	several	different	types	of	registers,	but	I’ll	introduce	the	concept	with	the	named	
registers,	Qirst.	There	are	over	two	dozen	named	registers,	one	for	each	letter	of	the	
alphabet.	

To	access	a	register	from	Normal	mode,	use	the	"	character	(i.e,	Shift-<Apostrophe>)	
followed	by	the	name	of	the	register	you	want	to	access.	Then	issue	the	verb	and	motion	
you	want	to	perform	on	that	register.	

So	if	I	want	to	delete	three	words	and	store	them	in	the	a	register	instead	of	the	system	
clipboard,	I	would	use	the	command	"ad3w.	"a	to	select	the	register,	and	d3w	as	the	normal	
command	to	delete	three	words.	And	if	I	later	want	to	put	that	same	text	somewhere	else,	I	
would	use	"ap	instead	of	just	p,	so	the	text	gets	pasted	from	the	a	register	instead	of	the	
default	register.	

"ad<motion>	will	always	replace	the	contents	of	the	a	register	with	whatever	text	motion	
or	object	you	selected.	However,	you	can	also	build	up	registers	from	multiple	delete	
commands	using	the	capitalized	name	of	the	register.	So	"Ad<motion>	will	append	the	text	
you	deleted	to	the	existing	a	register.	

I	Qind	this	useful	when	I	am	copying	several	lines	of	code	from	one	function	to	another	but	
there	is	a	conditional	or	something	in	the	source	function	that	I	don’t	need	in	the	
destination.	Copy	the	text	before	the	conditional	using	"ay	and	append	the	text	after	the	
conditional	using	"Ay,	and	then	paste	the	whole	thing	in	one	operation	with	"ap.	

I	can	copy	totally	different	text	into	the	b	register	using	e.g	"byS<label>.	Now	I	can	paste	
from	either	the	a	or	b	register	at	any	time	using	"ap	and	"bp.	

If	you	forgot	which	register	you	put	text	in,	just	press	"	and	wait	for	a	menu	to	pop	up	
showing	you	the	contents	of	all	registers.	If	that	menu	is	too	hard	to	navigate,	you	can	
instead	use	the	<Space>s"	command	to	open	a	picker	dialog	that	allows	you	to	search	all	
registers.	Just	enter	a	few	characters	that	you	know	are	in	the	register	you	want	to	paste,	
use	the	usual	picker	commands	to	navigate	the	list,	and	hit	Enter	to	paste	that	text	at	the	
last	cursor	position.	

If	you’re	in	the	<Space>s"	picker	dialog,	you’ll	notice	a	bunch	of	other	registers	besides	the	
named	alphabet	registers.	I’ll	discuss	each	of	those	next.	

Clipboard registers

In	LazyVim,	by	default,	the	registers	named	*	and	+	are	always	identical	to	the	default	
(unnamed)	register,	and	represent	the	contents	of	the	system	clipboard.	

To	understand	why,	we	need	some	history:	Vi	had	registers,	and	then	operating	systems	got	
excited	about	the	ideas	of	clipboards	and	vi	users	wanted	to	copy	stuff	to	the	system	
clipboard.	A	default	(non-lazy)	Vim	conQiguration	means	that	if	you	want	to	copy	text	to	the	
system	clipboard,	you	have	to	always	type	"+	before	the	y.	The	three	extra	keystrokes	
(Shift,	',	and	+)	can	get	pretty	monotonous	in	modern	workQlows	where	you’re	copying	
stuff	into	browsers,	AI	chat	clients,	and	e-mails	on	a	regular	basis.	

On	top	of	that,	some	operating	systems	(Unix-based,	usually)	actually	have	two	Operating	
System	clipboards,	an	implicit	one	for	text	you	select,	and	one	for	text	you	explicitly	copy	
with	Control-c	(in	most	programs).	This	text	would	be	stored	in	the	"*	register	and	the	
OS	lets	you	paste	it	elsewhere	with	(typically)	a	middle	click.	

I	recommend	sticking	with	LazyVim’s	synced	clipboard	conQiguration,	but	if	you	already	
have	muscle	memory	from	using	Vim	the	old	way	or	you’re	just	tired	of	deleted	text	
arbitrarily	overwriting	your	system	clipboard,	you	can	disable	this	integration	so	that	the	
three	registers	behave	as	described	above	instead	of	being	linked	together.	To	do	so	use	
space f c	to	open	the	options.lua	conQiguration	Qile	and	add	the	following	line:	

vim.opt.clipboard = ""	

Speaking	of	having	your	clipboard	contents	randomly	overwritten,	if	you	know	in	advance	
that	you	don’t	want	a	speciQic	delete	or	change	operation	to	overwrite	the	clipboard	
contents,	use	the	“Black	Hole”	register,	"_.	So	type	"_d<motion>	to	delete	text	without	
storing	it	in	any	registers	including	the	system	clipboard.	

If	you	want	to	copy	the	contents	of	one	register	to	another	register,	you	can	use	the	ex	
command	:let @a = @b	where	a	and	b	are	the	names	of	the	registers	you	want	to	copy	to	
and	from.	The	most	common	use	of	this	operation	is	to	copy	the	contents	of	the	system	

clipboard	(which	may	have	come	from	a	different	program)	into	a	named	register	so	it	
doesn’t	get	lost	the	next	time	you	issue	a	verb.	For	example,	:let @b = @+	will	copy	the	
system	clipboard	into	register	b.	

The last yanked or last inserted text

Whenever	you	issue	a	y	command	without	specifying	a	destination	register,	the	text	will	
always	be	stored	in	the	"0	register	as	well	as	the	default	register.	And	it	will	stay	in	"0	until	
the	next	yank	operation,	no	matter	how	many	deletes	or	changes	you	do	to	change	the	
default	register.	

So	if	you	yank	the	text	abc	and	then	delete	the	text	def,	the	p	command	will	paste	the	text	
def,	but	you	still	can	paste	abc	using	"0p.	

You	can	also	use	the	".	(period)	register	to	paste	the	text	that	was	most	recently	inserted.	
So	if	you	type	the	command	ifoo<Escape>	somewhere	in	the	document	and	move	
somewhere	else	in	the	document	and	type	".p,	it	will	insert	the	word	“foo”	at	the	new	
cursor	position.	".	is	a	register	that	you	may	occasionally	want	to	copy	into	a	named	
register	if	you	have	inserted	text	you	want	to	reuse.	Use	the	previously	discussed	:let @c
= @.	command	to	do	this.	

The delete (numbered) registers

The	numbered	registers	should	be	really	useful,	but	I	Qind	them	rather	confusing.	The	
registers	"1	through	"9	always	contain	the	text	that	you	most	recently	changed	or	deleted,	
in	ascending	order.	So	after	a	delete	operation,	whatever	was	in	"1	gets	moved	to	"2,	"2	
moves	to	"3	and	so	on,	and	whatever	is	in	"9	gets	dropped.	

I	can	never	remember	the	order	of	my	recent	deletes,	so	I	would	normally	have	to	use	the	"	
menu	to	see	the	contents	of	the	numbered	registers.	It’s	handy	that	my	recently	deleted	text	
is	stored	and	I	can	Qind	it	this	way.	However,	I	usually	use	the	yanky.nvim	plugin	
(discussed	later	in	this	chapter)	instead,	so	the	numbered	registers	are	not	that	useful	to	
me.	

There	is	also	a	“small	delete	register”	that	can	be	accessed	with	"-.	Whenever	you	delete	
any	text,	it	will	be	stored	in	the	numbered	registers,	but	if	that	text	is	less	than	one	line	long,	
it	will	also	be	stored	in	this	minus	register.	I	have	little	use	for	this	feature,	as	the	majority	of	
my	changes	are	smaller	than	one	line.	That	means	it	gets	cleared	before	it	drops	out	of	the	
numbered	registers.	

The current file’s name

The	Qile	that	you	are	currently	editing	is	stored	in	the	"%	register.	It	is	always	relative	to	the	
current	working	directory	of	the	editor	(usually	the	folder	you	were	in	when	you	started	
Neovim).	The	only	time	I	ever	want	to	access	this	register	is	to	copy	the	Qilename	to	the	
system	clipboard	with	:let @+ = @%	so	I	can	paste	the	Qilename	into	the	browser	or	my	
terminal.	

Recording to registers

Remember	the	recording	commands	I	told	you	about	in	Chapter	6:	qq	to	record	and	Q	to	
play	back	the	recording?	Turns	out	I	was	a	little	overly	simplistic	there.	

Recorded	commands	are	actually	stored	in	a	named	register.	In	this	case,	I	arbitrarily	chose	
the	q	register	when	I	said	to	use	qq	to	start	recording.	But	you	can	just	as	easily	store	it	in	
the	a	register	using	qa	or	the	f	register	using	qf.	

The	qQ	command	to	“append	to	recording”	operation	is	analogous	to	the	capitalized	
"A<command>	used	to	append	to	a	register.	In	this	case,	Q	is	still	an	arbitrary	name,	and	you	
can	append	a	recording	to	a	different	named	register	besides	q,	use	qA	or	qZ,	for	example.	

Having	multiple	sets	of	recordings	can	be	really	handy	when	you	are	performing	a	complex	
refactoring	that	requires	you	to	make	one	of	several	different	repetitive	changes	in	different	
locations	across	your	codebase.	

The	Q	command	to	play	back	a	recording	always	plays	back	the	most	recently	recorded	
command,	regardless	of	register.	If	you	want	to	play	back	from	a	different	register,	you	
would	use	the	@	command,	followed	by	the	name	of	the	register.	So	if	you	recorded	using	
qa,	you	would	play	it	back	with	@a.	As	a	simple	shortcut,	@@	will	always	replay	whichever	
register	you	most	recently	played	(which	is	different	from	Q	which	always	plays	back	the	
most	recent	recording).	

Edi/ng recordings

To	be	clear,	recordings	are	placed	in	normal	registers.	So	if	you	record	a	sequence	of	
keystrokes	to	a	register	using	qa	and	then	put	the	register	using	"ap,	you	will	actually	see	
the	list	of	Vim	commands	you	recorded.	

This	can	be	useful	if	you	mess	up	while	recording	and	need	to	modify	the	keystrokes.	After	
recording	the	keystroke,	paste	it	to	a	new	line	using	e.g.	"a]p.	At	this	point	it’s	just	a	normal	
line	of	text	that	happens	to	contain	vim	commands.	You	can	modify	it	to	add	other	Vim	
commands,	since	they	are	all	just	normal	keystrokes.	

For	example,	let’s	say	I	recorded	a	command	as	qadw2wdeq,	which	records	to	the	a	register	
(qa),	deletes	a	word	(dw),	skips	ahead	two	words	(2w),	and	then	deletes	the	next	word	(de),	
then	ends	the	recording	with	q.	But	too	late,	I	realize	I	should	have	skipped	over	3	words,	
not	two	words.	

I	can	use	"ap	to	paste	the	contents	of	the	recording,	which	will	look	like	this:	dw2wde.	Then	
I	can	use	f2	to	jump	to	the	2	digit,	followed	by	r3	to	replace	it	with	a	3.	Now	I	can	use	
"ayiw	to	replace	the	contents	of	the	register	with	dw3wde.	

Now	if	I	want	to	play	back	that	modiQied	command,	I	can	just	use	@a	as	usual.	

The yanky.nvim plugin

Yanky	has	some	niceties	such	as	improving	the	highlighting	of	text	on	yank	and	preserving	
your	cursor	position	so	that	you	can	keep	typing	after	pasting,	but	its	primary	feature	is	
better	management	of	your	clipboard	history.	LazyVim	also	conQigures	it	with	several	new	
keybindings	to	make	putting	text	more	pleasant.	

The	plugin	is	not	enabled	by	default,	but	it	is	a	recommended	extra,	so	if	you	followed	my	
suggestion	of	installing	all	recommended	extras	back	in	Chapter	5,	you	may	have	it	enabled	
already.	If	not,	head	to	:LazyExtras,	Qind	yanky.nvim	and	hit	x.	Then	restart	Neovim.	

Now	that	Yanky	is	enabled,	the	easiest	interface	to	see	your	clipboard	history	can	be	
accessed	with	<Space>p.	It	pops	up	a	picker	menu	of	all	your	recent	clipboard	entries.	Up	
to	a	hundred	entries	are	stored,	which	is	a	lot	more	than	you	get	in	the	numbered	registers,	
and	it	stores	your	yanks,	not	just	your	deletes	and	changes.	If	you	need	to	paste	something	
that	is	no	longer	in	the	clipboard,	<Space>p	is	probably	the	quickest	way	to	Qind	it.	

Another	super	useful	keybinding	is	[y.	If	you	invoke	this	command	immediately	after	a	put	
operation,	the	text	that	was	put	will	be	replaced	with	the	text	that	was	cut	or	copied	prior	
to	the	most	recent	yank.	And	if	you	press	it	again,	it	will	go	back	one	more	step	in	history,	
up	to	100	steps.	So	if	you	aren’t	sure	exactly	which	numbered	register	a	delete	operation	is	
in,	or	you	want	to	access	text	that	was	yanked	but	is	no	longer	in	the	"0	register,	you	can	
use	p[y[y[y...	until	you	Qind	the	text	you	really	wanted	to	pasted.	If	you	go	too	far,	you	
can	cycle	forward	with]y.	

LazyVim	also	creates	some	useful	keybindings	to	improve	how	text	is	put,	especially	with	
respect	to	indentation.	The	two	most	useful	useful	are	[p,	and]p,	(The	capitalized	versions	
[P,	and]P	are	just	duplicates	that	you	can	safely	ignore).	

These	commands	will	paste	the	text	in	the	clipboard	on	the	line	above	or	below	the	current	
line,	depending	on	whether	you	used	[or].	You	may	think	this	would	be	identical	to	the	
automatic	line-wise	pasting	described	above,	but	it’s	slightly	different	for	two	reasons:	

• First,	it	pastes	on	a	new	line	regardless	of	what	command	was	used	to	cut	or	copy	
the	text	that	is	in	the	clipboard.	

• Second,	it	automatically	adjusts	the	indentation	of	the	text	on	the	new	line	to	match	
the	indentation	of	the	current	line.	

So	if	you’re	moving	code	into	a	nested	block	and	need	to	change	indentation,	use]p	instead	
of	relying	on	line-wise	paste.	Then	you	don’t	have	to	format	it	afterwards,	(Not	that	
formatting	is	hard	in	LazyVim;	it	happens	on	save).	

You	can	also	use	>p	<p,	>P,	and	<P	to	automatically	add	or	remove	indentation	when	you	
put	code.	

Summary

This	chapter	was	all	about	selecting	and	copying	text.	We	learned	the	yank	verb	for	copying	
text	and	then	dug	into	the	various	Visual	modes	that	can	be	used	for	selecting	text.	

Then	we	learned	that	Vim	has	multiple	clipboards	called	registers,	and	how	to	cut	and	copy	
to	or	paste	from	those	registers.	We	even	went	into	more	detail	about	using	registers	to	
record	multiple	separate	command	sequences	before	discussing	the	yanky.nvim	plugin	to	
make	your	pasting	life	a	little	easier.	

In	the	next	chapter,	we’ll	learn	about	various	ways	to	navigate	between	symbols	in	related	
source	code	Qiles	as	well	as	how	to	show	and	hide	code	with	folding.	

Chapter 9: Buffers and Layouts

Chapter	9:	Buffers	and	Layouts	-	LazyVim	for	Ambitious	Developers	

No	matter	what	programming	language	you	are	working	with,	it	is	inevitable	that	you	will	
be	working	on	multiple	Qiles	at	a	time.	And	in	multiple	areas	within	the	same	Qile.	

Like	all	coding	editors	(other	than	Notepad),	Neovim	has	a	robust	system	for	working	with	
multiple	Qiles.	LazyVim	is	conQigured	with	a	powerful	buffer,	Qile,	and	window	management	
system	that	may	feel	familiar	at	Qirst,	but	is	actually	far	more	powerful	than	your	average	
editor.	

Some terminology

Sometimes	it	seems	like	every	window	management	system	uses	the	same	words	for	
different	things.	If	you	read	the	documents	for	e.g.	tmux,	emacs,	kitty,	vim,	and	i3,	you’ll	end	
up	with	multiple	deQinitions	for	words	like	“window”,	“pane”,	“tab”,	and	“layout”.	

I’ll	stick	with	the	Vim	deQinitions	of	these	words	so	that	you	can	switch	between	this	book	
and	most	Vim	and	vim	plugin	help	Qiles,	tutorials,	and	documentation,	without	getting	
confused.	Unfortunately,	this	may	mean	you	get	confused	when	interacting	with	any	other	
software!	

This	list	goes	roughly	from	least	to	most	speciQic,	though	understand	that	the	relationship	
between	most	of	these	elements	is	a	graph	rather	than	a	tree;	it’s	not	a	strict	hierarchy.	

• Server:	Neovim	can	run	in	a	server	mode	and	can	have	multiple	clients	attached.	
This	means	you	can	have	multiple	views	into	the	same	Neovim	instance,	and	those	
views	could	be	from	different	terminals	or	GUI	software,	web	browsers	or	even	a	VS	
Code	Extension.	You	will	probably	not	need	think	about	the	Neovim	server,	and	I	
won’t	mention	it	again	in	this	book.	But	if	you	want	to	do	something	interesting	such	
as	connect	to	an	existing	Neovim	instance	to	open	a	commit	message	rather	than	
opening	Neovim	in	a	new	window,	you	now	know	that	this	is	possible.	

• Client:	A	Neovim	application	that	you	are	actually	running.	Normally	connected	to	
its	own	independent	server	but	can	be	conQigured	to	connect	to	an	existing	or	
remote	one.	A	client	is	what	starts	up	when	you	type	nvim,	but	other	clients	include	
GUIs	such	as	Neovide	or	VimR.	

• Tab:	One	client	can	have	multiple	tabs.	Each	tab	is	a	full	screen	layout	that	is	more	or	
less	independent	from	the	other	tabs.	You	can	have	different	buffers	visible	and	
different	conQigurations	of	window	splits	on	each	tab.	Only	one	tab	is	visible	at	any	
one	time.	This	is	a	much	different	paradigm	from	VS	Code	and	many	other	
environments	where	each	split	has	its	own	set	of	tabs.	

• Window:	Also	known	as	a	“pane”	or	a	“split”,	a	window	is	a	section	of	the	screen	that	
is	dedicated	to	viewing	a	buffer.	Every	tab	has	one	or	more	windows	on	it.	Every	
window	is	normally	entirely	visible;	there	is	no	overlap	between	windows	(except	in	
the	case	of	Qloating	windows	such	as	the	ones	that	pop	up	when	you	open	a	picker	or	
Lazy	Extras).	If	a	buffer’s	contents	don’t	Qit	in	a	window	the	window	can	be	scrolled.	

• Buffer:	This	is	Vim’s	word	for	a	Qile	that	is	currently	open	and	available	to	be	
viewed/edited.	One	buffer	can	be	displayed	in	multiple	windows,	which	means	you	
can	have	two	side-by-side	views	into	the	same	Qile	at	different	scroll	positions	or	you	
can	view	the	same	buffer	in	multiple	tabs.	If	a	buffer	is	visible	in	two	places,	they	will	
have	the	exact	same	contents	(other	than	scrolling	position).	There	is	only	ever	one	

buffer	open	for	each	Qile,	no	matter	how	many	views	of	the	buffer	are	visible	in	
different	windows	or	tabs.	

• Fold:	Within	any	one	view	of	a	buffer,	it	is	possible	to	“collapse”	a	section	of	that	Qile	
(for	example	a	function,	class,	or	indentation	level)	into	a	single	line,	effectively	
hiding	the	contents.	This	allows	you	to	view	two	disjointed	sections	of	the	same	Qile	
at	the	same	time	while	keeping	the	unrelated	information	between	those	two	
sections	hidden.	

• File:	A	Qile	that	exists	on	disk.	Each	buffer	is	linked	to	at	most	one	Qile,	though	it	is	
possible	to	have	buffers	with	no	Qile	(sometimes	called	“scratch”	buffers,	a	word	
borrowed	from	Emacs	parlance).	The	contents	of	a	buffer	may	not	be	the	same	as	
the	contents	of	the	Qile	on	disk	if	the	buffer	has	not	been	saved.	

So	far	in	this	book,	all	your	interactions	have	been	with	one	or	more	buffers	in	a	single	
window	in	a	single	tab.	Now,	things	are	about	to	get	much	more	complicated	interesting.	

Buffers

We’ll	start	with	buffers.	If	you’ve	used	Telescope,	Neo-tree,	or	mini.Qiles	to	open	multiple	
Qiles,	you	may	well	think	that	a	buffer	is	a	tab.	In	this	view,	I	have	three	buffers	open,	only	
one	of	which	is	currently	visible:	

	

This	is	a	buffer	line,	not	a	tab	bar.	I	repeat:	Those	are	not	called	tabs.	Yes,	I	know	they	look	
like	tabs	in	any	other	software,	ever,	but	that	is	because	LazyVim	has	conQigured	the	buffer	
line	to	look	like	tabs.	With	the	buffer	line	visible,	you	may	actually	not	need	to	use	(real)	
Vim	tabs	very	often,	but	in	Vim,	tabs	are	a	completely	different	concept.	

No	matter	how	many	windows	you	have	open,	there	is	only	one	buffer	line.	In	the	following	
screenshot,	I	have	the	same	three	buffers	open,	and	two	of	them	are	visible	in	in	separate	
windows,	side	by	side.	But	there	is	still	only	one	buffer	line	along	the	top	of	the	editor.	

	

This	implies	that	buffers	are	a	“global”	concept.	There	is	one	collection	of	buffers	for	the	
entire	Neovim	client,	and	you	can	access	any	of	those	buffer	from	any	window	(or	tab).	

You	can,	of	course,	use	the	mouse	to	select	different	buffers	from	the	buffer	line	with	a	
single	click.	But	why	would	you	do	that	when	there	are	so	many	ways	to	access	buffers	
with	the	keyboard	in	LazyVim?	

Naviga/ng between open buffers

The	absolute	easiest	way	to	switch	between	buffers	is	using	the	H	and	L	(i.e.	Shift-h	and	
Shift-l)	keys.	By	this	point	you	are	hopefully	intimately	familiar	with	the	fact	that	h	
means	left	and	l	means	right	for	cursor	movement.	If	you	just	press	the	shift	keys,	you	will	
switch	the	buffer	visible	in	the	currently	active	window	to	whichever	buffer	is	to	the	left	or	
right	of	the	current	buffer	in	the	buffer	line.	

I,	of	course,	don’t	use	these	because	of	being	that	left-handed,	dvorak	layout,	split	keyboard	
using	mutant	I	mentioned	in	Chapter	3,	but	you	probably	should.	I	instead	use	the	[b	
and]b	commands	which	map	to	the	same	thing.	

Annoyingly,	you	will	Qind	that	these	keybindings	do	not	accept	counts.	So	you	cannot,	by	
default,	use	2L	to	jump	two	tabs	to	the	right.	This	frustrated	me	because	I	know	the	
underlying	:bnext	and	:bprev	commands	do	accept	a	count.	

It	turns	out	that	LazyVim	maps	these	to	a	BufferLineCycleNext	command	provided	by	
the	underlying	plugin,	bufferline.nvim,	and	that	plugin	doesn’t,	as	far	as	I	can	tell	
support	counts.	

Upon	investigation	it	sounds	like	the	BufferLineCycle*	commands	exist	because	the	
plugin	can	conQigure	some	kind	of	sorting	mechanism	on	the	buffer	list.	But	LazyVim	isn’t	
conQigured	to	use	that	mechanism.	So	we	can	use	the	old-fashioned	commands	instead.	To	
do	so,	create	a	new	Qile	in	your	plugins	conQiguration	folder	named	(something	like)	
extend-bufferline.lua:	

return {	
 "akinsho/bufferline.nvim",	
 keys = {	
 {	
 "L",	
 function()	
 vim.cmd("bnext " .. vim.v.count1)	
 end,	
 desc = "Next buffer",	
 },	
 {	
 "H",	

 function()	
 vim.cmd("bprev " .. vim.v.count1)	
 end,	
 desc = "Previous buffer",	
 },	
 {	
 "]b",	
 function()	
 vim.cmd("bnext " .. vim.v.count1)	
 end,	
 desc = "Next buffer",	
 },	
 {	
 "[b",	
 function()	
 vim.cmd("bprev " .. vim.v.count1)	
 end,	
 desc = "Previous buffer",	
 },	
 },	
}	

The	vim.v.count1	variable	is	set	whenever	a	keybinding	is	called	with	a	count,	so	it	can	
be	accessed	inside	the	callback	and	passed	to	the	Vim	command	using	string	concatenation	
(the	..	operator).	Restart	neovim	and	you	can	do	things	like	3L	to	jump	three	buffers	to	the	
right	on	the	buffer	line.	

Another	keybinding	you	will	want	to	reach	for	when	jumping	between	buffers	is	
<Space><Backtick>.	This	one	simply	jumps	between	the	current	Qile	and	the	Qile	that	was	
most	recently	opened	in	the	current	window.	In	Vim	parlance,	this	is	referred	to	as	“the	
alternate	Qile.”	

If	you	have	a	large	number	of	buffers	open,	the	buffer	line	can	get	awfully	crowded.	At	some	
point,	it	will	show	two	arrows	to	the	left	and/or	right	of	the	buffer	bar	so	you	can	tell	that	
there	are	“hidden”	buffers.	When	you	navigate	through	buffers,	it	will	always	ensure	the	
active	buffer	is	visible.	Here’s	a	very	full	buffer	line	with	four	buffers	hidden	to	the	left	and	
two	hidden	to	the	right:	

	

If	you	have	this	many	buffers	open,	you	may	Qind	it	easier	to	use	Telescope	or	fzf.lua	
(depending	which	you	have	enabled)	to	search	through	the	open	buffers.	The	keybinding	to	

pop	up	a	Qilterable,	scrollable	list	of	buffers	is	<Space><comma>.	It	has	the	exact	same	
contents	as	the	buffer	line,	but	it’s	a	different	interaction	effect.	

This	is	useful	if	you	are	working	on	large	projects	that	have	so	many	Qiles	that	searching	
through	them	with	<Space><Space>	is	difQicult.	If	you	open	the	relatively	low	number	of	
Qiles	that	you	actually	need	to	access	as	active	buffers,	they	will	be	easier	to	Qilter	in	the	list	
of	open	buffers	from	<Space><comma>.	

Alternatively,	you	can	use	NeoTree	to	navigate	open	buffers.	If	you	show	the	NeoTree	
sidebar,	you’ll	see	that	it	has	some	“accordian”-style	widgets,	named	Neo-Tree,	Neo-Tree
Git	and	Neo-Tree Buffers.	NeoTree	has	a	variety	of	sources	for	navigating	tree-like	
interfaces,	though	these	three	are	the	only	ones	preconQigured	by	LazyVim.	

To	switch	between	the	accordions	(NeoTree	calls	them	“sources”),	you	can	click	a	different	
heading	(e.g.	Neo-Tree	Buffers)	with	the	mouse,	or	use	the	<	and	>	keys	to	cycle	through	
them.	Alternatively,	use	the	<Space>be	key	sequence	to	show	the	“buffer	explorer”.	

Once	the	Neo-Tree	Buffers	view	is	visible,	it	will	look	something	like	this:	

	

Note	that	if	you	have	buffers	open	that	are	not	rooted	in	the	current	working	directory,	they	
won’t	show	up	in	Neotree.	You’ll	have	to	use	Telescope	for	those.	

Tip:	If	you	tend	to	have	the	Neotree	sidebar	open	all	the	time,	you	might	want	to	
consider	disabling	the	bufferline	across	the	top	of	your	screen.	It	shows	the	same	
information	and	there’s	no	reason	to	spend	screen	real	estate	(that	most	precious	
commodity)	on	having	both	of	them	visible	all	the	time.	Just	add	{ "akinsho/
bufferline.nvim", enabled = false }	to	your	disabled.lua.	Be	aware	
that	this	will	disable	certain	buffer	management	keybindings,	however.	

Closing Buffers

You	will	commonly	want	to	close	the	current	buffer	without	closing	the	split(s)	it	is	
currently	open	in.	The	keybinding	for	this	is	<Space>bd,	where	<Space>b	pops	up	a	useful	
menu	of	other	buffer	related	functions,	and	d	means	“delete”.	You	aren’t	actually	deleting	
the	underlying	4ile	when	you	do	this;	you’re	just	deleting	the	buffer	from	Vim’s	memory:	
i.e.	closing	it.	

You	can	also	just	press	bd	if	you	currently	have	Neotree’s	buffer	view	focused.	

I	Qind	that	closing	buffers	is	too	common	a	task	to	deserve	three	keys,	so	I	have	added	the	
following	to	the	keys	array	I	deQined	in	extend-bufferline.lua:	

 {	
 "<leader><delete>",	
 LazyVim.ui.bufremove,	
 desc = "Close current buffer"	
 },	

Here	are	several	other	commands	you	can	use	to	close	buffers:	

Keybin
ding

Description Mnemonic

<Space
>bD

Close	buffer	and	the	window	split	it	is	
in.

Delete	buffer,	but	
“bigger”

<Space
>bl

Close	all	buffers	to	the	right	in	the	tab	
line

<Space
>bh

Close	all	buffers	to	the	left	in	the	tab	
line

The	last	one	needs	some	clariQication.	You	can	toggle	a	“pin”	on	any	active	buffer	using	
<Space>bp.	You’ll	see	a	pin	icon	show	up	to	the	left	of	the	buffer	name.	The	only	purpose	of	
this	pin	is	to	keep	it	open	if	you	want	to	close	all	the	“less	important”	(unpinned)	Qiles	using	
<Space>bP.	I	personally	don’t	use	buffer	pinning	very	much,	so	for	me,	<Space>bP	is	a	
shortcut	for	“close	all	buffers”;	useful	when	I	complete	one	task	and	am	ready	to	start	
another.	

One	last	tip	for	deleting	buffers.	If	you	spend	a	lot	of	time	in	the	Telescope	buffer	picker	
(from	<Space>,),	you	can	set	up	a	keybinding	for	that	picker	that	allows	you	to	delete	Qiles	
from	it	without	Qirst	activating	the	buffer	in	a	window.	I	have	this	mapped	to	<Alt-D>.	To	
do	so,	create	an	extend-telescope.lua	Qile	that	contains	the	following:	

return {	
 "nvim-telescope/telescope.nvim",	
 opts = {	
 pickers = {	
 buffers = {	
 mappings = {	
 i = {	
 ["<A-d>"] = function(...)	
 return require("telescope.actions").delete_buffer(...)	
 end,	
 },	
 n = {	
 ["<A-d>"] = function(...)	
 return require("telescope.actions").delete_buffer(...)	
 end,	
 },	
 },	
 },	
 },	

<Space
>bo

Close	all	buffers	other	than	the	active	
one

“only”	this	buffer

<Space
>bP

Delete	all	non-pinned	buffers “P”	is	opposite	of	“p”

Keybin
ding

Description Mnemonic

 },	
}	

Now	that	you	know	all	about	buffers,	let’s	discuss	windows.	

Windows

In	most	modern	environments,	“windows”	refer	to	the	OS-level	windows	such	as	the	
terminal	you	are	running	Neovim	in.	Since	Vi	predates	such	environments,	they	were	able	
to	use	the	word	window	to	refer	to	what	are	nowadays	more	commonly	described	as	
“panes”	or	“splits”	in	other	environments,	and	the	name	has	stuck.	

All	the	default	Vim	window	keymaps	are	available	in	a	submode	that	is	accessible	via	
Control-w.	If	you	hit	that	key-combination,	LazyVim	will	pop	up	a	menu	with	the	
windowing	commands	you	can	use:	

	

We’ll	go	into	detail	of	some	of	those	in	a	bit,	but	Qirst,	I	need	to	acknowledge	that	moving	
between	windows	happens	a	lot,	and	that	Control	key	is	not	always	the	most	comfortable	
thing	to	access.	So	I	recommend	adding	the	following	keymap	to	your	global	conQig	(press	
<Space>fc	to	open	a	picker	into	the	conQig	directory,	and	then	Qilter	for	the	keymaps.lua	
Qile):	

vim.keymap.set("n", "\\\\", "<C-w>", {	
 desc = "Show Window menu",	
 remap = true	
})	

This	maps	the	backslash	key	to	Control-w	so	that	the	single	keypress	\	shows	the	same	
menu	that	two-Qingered	Control-w	does.	So	for	example,	that	means	that	instead	of	
pressing	<Control-w>v	to	create	a	vertical	split,	I	can	use	\v	instead.	I	will	assume	you	
have	added	this	keymap	in	the	rest	of	this	discussion.	

Crea/ng Window Splits

Windows	in	LazyVim	can	be	created	on	the	Qly	at	any	time.	To	split	the	current	window	in	
half	“vertically”	with	one	window	on	the	left	and	a	new	window	on	the	right,	use	the	\v	key.	

When	you	create	a	split,	the	new	window	will	contain	another	view	of	the	buffer	you	were	
already	viewing,	side	by	side	or	one	above	the	other.	But	once	the	split	is	opened,	you	can	
switch	the	buffer	in	that	split	using	any	of	the	buffer	management	commands	or	by	opening	
a	new	Qile	with	any	of	the	tools	we’ve	previously	discussed	for	opening	Qiles.	

To	create	a	horizontal	split	between	two	windows	one	above	the	other,	use	\s.	The	
Mnemonic	for	this	is	unfortunately	just	“split”.	They	weren’t	able	to	reuse	\h	because	that	is	
saved	for	navigation.	

Note:	LazyVim	also	allows	you	to	create	a	vertical	split	with	<Space>-|	where	the	|	is	the	
vertial	bar	when	you	Shift-Backslash,	and	<Space>-<Minus>	for	a	horizontal	split.	I	
never	use	these	because	\v	is	one	fewer	keys	to	press	and	the	\s	is	requires	less	hand	
movement	than	<Space>-<Minus>	on	my	keyboard.	

Crea/ng Splits When Opening files

You	already	know	you	can	open	a	Qile	in	the	current	window	from	Neo-Tree	by	moving	your	
cursor	to	the	Qile	and	pressing	<Enter>.	You	can	also	use	the	s	key	in	Neo-Tree	to	open	it	in	
a	vertical	split	(unlike	the	\s	key	to	create	a	horizontal	split	in	a	normal	buffer).	The	shifted	
form,	S	in	Neo-Tree	is	used	to	create	a	horizontal	split.	To	be	honest,	this	is	one	place	where	
I	think	Neo-Tree’s	unconventional	keybindings	are	superior	to	the	built-in.	

If	you	are	using	Telescope	or	fzf.lua	to	open	Qiles,	you’ll	use	yet	another	set	of	keybindings!	
To	open	a	Qile	in	a	vertical	split	from	telescope,	use	the	Control-v	keybinding	(this	works	
in	both	Insert	and	Normal	mode	in	the	Telescope	prompt	area,	but	only	in	Insert	mode	with	
fzf.lua).	To	open	it	a	horizontal	split	you	use	Control-x	(I	know:	WTF,	right?)	

Finally,	If	you	use	mini.files,	you	can	open	a	Qile	in	a	split	using	the	same	keybindings	as	
in	a	normal	window	(<Control-w>v	or	\v	and	<Control-w>s	or	\s),	thanks	to	a	PR	I	
submitted	so	I	could	shorten	this	chapter!	

Naviga/ng between windows

You	can	move	your	cursor	between	window	splits	by	holding	the	control	key	along	with	any	
of	the	h,	j,	k,	or	l	home	row	arrow-key	directions.	It	can	also	be	preQixed	with	numerical	
counts	if	you	want	to	skip	over	a	window	to	get	to	the	next	one.	

Alternatively,	you	can	use	the	same	keys	with	\.	So	\h	will	move	to	the	window	to	the	left	of	
the	current	one.	

This	is	also	a	good	time	to	mention	the	mrjones2014/smart-splits.nvim	plugin,	which	
can	be	conQigured	to	navigate	between	Vim	windows	and	Kitty,	Wezterm,	or	Tmux	panes	
with	the	same	keybindings.	Consider	this	screenshot:	

	

I	have	three	Kitty	Terminal	panes	open.	The	left	one	is	running	Neovim	with	two	windows	
in	it,	one	above	the	other.	The	right	is	split	into	two	normal	terminal	panes.	By	default,	if	I	
want	to	navigate	between	the	three	Kitty	panes,	I	have	to	use	one	set	of	keybindings,	and	if	I	
want	to	navigate	between	the	two	Neovim	windows,	I	have	to	use	another	set	of	
keybindings.	With	the	smart-splits.nvim	plugin,	I	can	navigate	between	all	the	windows	
with	the	same	keybindings,	no	matter	where	my	cursor	is.	

Setting	up	the	terminal	integration	for	smart	splits	is	beyond	the	scope	of	this	book	
(documentation	on	the	README	in	the	github	repository	should	be	sufQicient),	but	to	
conQigure	the	smart-splits	plugin	in	Neovim,	create	a	Qile	in	the	plugins	directory	called	
e.g.	smart-splits.lua:	

return {	
 "mrjones2014/smart-splits.nvim",	
 build = "./kitty/install-kittens.bash",	
 keys = {	
 {	
 "<A-h>",	
 function()	
 require("smart-splits").move_cursor_left()	
 end,	
 desc = "Move to left window",	
 },	
 {	

https://github.com/mrjones2014/smart-splits.nvim

 "<A-l>",	
 function()	
 require("smart-splits").move_cursor_right()	
 end,	
 desc = "Move to right window",	
 },	
 {	
 "<A-j>",	
 function()	
 require("smart-splits").move_cursor_down()	
 end,	
 desc = "Move to below window",	
 },	
 {	
 "<A-k>",	
 function()	
 require("smart-splits").move_cursor_up()	
 end,	
 desc = "Move to above window",	
 },	
 },	
}	

If	you	are	using	WezTerm	or	Tmux	you	won’t	need	the	build =	line,	but	for	all	three	
environments,	you’ll	also	need	to	add	some	conQiguration	to	your	Kitty,	WezTerm,	or	Tmux	
conQiguration.	

Closing a Window Split

You	can	close	a	window	at	any	time	using	\q	where	the	mnemonic	is	“quit”,	although	you	
aren’t	actually	quitting	anything.	You’re	just	closing	the	split.	

If,	instead,	you	want	to	close	all	splits	except	the	active	one,	use	\o	for	“only	this	window”	
or	“close	other”.	

Resizing Windows

In	my	unconventional	opinion,	the	easiest	way	to	resize	Vim	splits	is	to	use…	the	mouse.	
There	is	a	vertical	bar	between	vertical	splits	that	you	can	click	and	drag	on.	The	mouse	
cursor	doesn’t	change	to	give	you	any	feedback	that	you	can	click	and	drag	on	it,	but	it	
works.	

For	horizontal	splits	(when	two	windows	are	one	above	the	other),	there	is	no	obvious	bar	
to	click.	But	you	can	actually	just	click	on	the	status	bar	of	the	“upper”	window	to	move	it	
up	or	down.	

If	you	insist	on	using	the	keyboard,	the	keybindings	are	in	the	\	menu:	\+	and	\-	to	
increase	or	decrease	the	height	of	the	active	window	in	a	horizontal	split,	and	\>	or	\<	to	
increase	or	decrease	the	width	of	a	vertical	split.	They	only	move	by	one	row	or	column	at	a	
time,	so	you	will	almost	certainly	want	to	preQix	these	commands	with	a	count	greater	than	
10.	

To	change	everything	to	a	“default”	size,	use	\=	which	will	make	all	the	windows	“equally	
high	and	wide.”	I	use	this	keybinding	frequently	whenever	I	open	a	“temporary”	window	
such	as	Neo-tree	or	the	Copilot	Chat	window	to	ensure	the	other	windows	share	the	
remaining	space	equally.	

Tabs

Tabs	in	Vim	are	rather	unusual.	Some	other	paradigms	might	describe	them	as	“Layouts”.	
All	tabs	are	connected	to	the	same	list	of	currently	open	buffers,	which	is	different	from	
most	tab	models,	but	each	tab	can	be	split	into	different	window	layouts.	So	you	might	have	
one	tab	with	three	vertical	splits	and	a	second	tab	with	four	windows	open	in	a	grid,	for	
example.	In	each	of	the	seven	splits	you	can	have	any	buffer	you	like	open,	possibly	in	
multiple	locations.	

LazyVim	has	a	dedicated	tab	menu	that	is	accessed	by	pressing	<Space>-<Tab>:	

	

To	create	a	new	tab,	just	press	<Space>-<Tab>-<Tab>.	If	you	want	to	“move”	the	currently	
open	window	split	into	a	new	tab,	use	\T	(that’s	a	capital	T).	This	will	effectively	close	the	
current	window	split	and	create	a	new	tab	with	the	same	buffer	in	that	tab.	

After	you	create	a	tab,	you’ll	likely	have	trouble	Qinding	it	again!	The	tabs	are	grouped	at	the	
right	end	of	the	buffer	line:	

	

This	screenshot	has	two	tabs,	numbered	1	and	2	at	the	right	with	an	X	beside	them.	The	
three	buffers	at	the	left	are	not	tabs.	Have	I	emphasized	that	too	many	times?	

Unfortunately,	other	than	numbers,	the	tabs	don’t	do	anything	to	make	themselves	look	
unique;	it	is	not	possible	to	know	which	buffers	are	active	in	each	tab	or	what	layout	they	
have.	

To	navigate	between	tabs,	you	can	click	the	numbers,	or	you	can	use	the	default	vim	
keybindings	of	gt	and	gT	to	go	to	the	next	or	previous	tab.	Alternatively,	the	
<Space><Tab>[and	<Space><Tab>]	keybindings	provided	by	LazyVim	can	also	switch	
tabs.	To	go	to	a	speciQic	tab	by	number,	use	that	number	as	the	count	when	calling	gt.	For	
example	3gt	will	show	the	tab	number	3	rather	than	jumping	three	tabs	to	the	right.	

There	are	several	ways	to	close	a	tab:	

• Just	close	the	last	window	in	the	tab	(i.e.	with	\q)	and	the	tab	will	disappear.	
• The	<Space><tab>d	keybinding	will	close	all	the	windows	in	a	tab	and	then	the	tab.	

The	buffers	will	stay	open.	
• Click	the	X	icon	to	the	right	of	the	tabs	in	the	tab	bar.	

Code Folding

Vim’s	code	folding	system	is	almost	too	robust,	probably	because	it	has	had	many	iterations	
of	“best	practices”	over	the	years.	LazyVim	is	conQigured	with	the	current	best	practices,	so	
you	generally	only	need	a	small	subset	of	the	complete	list	of	folding	commands.	

If	you	are	unfamiliar	with	the	concept,	code	folding	allows	you	to	hide	entire	sections	of	
code	by	collapsing	them	into	a	single	line.	Visually,	this	has	a	similar	effect	to	splitting	a	
window	horizontally	and	then	reading	two	sections	of	the	same	Qile	above	and	below	the	
split,	but	when	you	use	folding	only	one	view	of	the	buffer	is	visible	and	it	scrolls	as	a	single	
entity.	

Consider	this	section	of	code:	

	

While	I’m	editing,	imagine	that	I	am	interested	in	the	clearExistingTimeout	function	at	
the	top	of	the	screenshot	and	the	addTodo	function	at	the	bottom,	but	not	currently	
interested	in	the	contents	of	the	two	save	callbacks.	I	can	collapse	those	sections	and	my	
screen	looks	like	this:	

	

Most	fold	operations	are	accessible	from	the	z	mode	menu	accessible	by	typing	z	in	Normal	
mode	(We	discussed	some	of	the	z	mode	operations	in	an	earlier	chapter	when	we	were	
dealing	with	scrolling).	To	collapse	a	section	of	code	into	a	fold,	use	whatever	navigation	
operations	you	like	to	get	to	that	section	and	type	zc	for	“collapse	fold”.	

To	open	it	again,	use	zo	for	“open	fold”.	

Alternatively,	if	you	only	want	to	remember	a	single	keybinding,	za	will	toggle	a	fold,	
collapsing	if	you	are	not	on	a	folded	line	and	expanding	if	you	are.	

If	you	have	collapsed	some	folds	and	want	to	quickly	get	back	to	a	point	where	there	are	no	
folds	collapsed,	use	zR	to	open	all	folds.	I	had	no	idea	what	mnemonic	is	supposed	to	work	
with	R,	but	an	early	reader	helpfully	pointed	out	that	zr	is	“reduce	folding”,	so	zR	is	“Reduce	
folding	BUT	BIGGER”.	

You	can	even	nest	folds	by	folding	already	folded	code.	If	you	want	to	open	folds	recursively,	
use	zO,	which	will	open	a	fold	and	any	folds	that	are	nested	under	that	fold.	

The	way	LazyVim	is	conQigured,	you	don’t	have	much	control	over	what	gets	folded,	but	it	
will	usually	do	something	close	to	what	you	expect	based	on	where	your	cursor	is	in	the	
document.	“What	you	expect”	depends	on	both	the	LSP	and	the	TreeSitter	grammar	for	the	
language	you	are	working	on,	but	I	Qind	it	best	to	just	let	it	do	its	thing	and	not	disagree	
with	it.	

If	you	Qind	that	you	want	way	more	control	over	code	folding,	I	recommend	reading	:help
folding	in	its	entirety.	More	than	likely,	you’ll	decide	that	actually,	you	don’t	want	more	
control	over	folding	and	just	want	LazyVim	to	handle	it	for	you!	

Sessions

After	a	long	hard	day	of	coding,	you	probably	have	several	buffers	open	and	your	splits	and	
tabs	conQigured	with	all	the	Qiles	in	just	the	right	places.	Wouldn’t	it	be	nice	to	put	the	code	
away	for	the	evening	and	come	back	to	all	those	buffers,	tabs,	and	splits	just	as	they	were?	

LazyVim	has	built-in	session	management	enabled	by	default.	Simply	close	LazyVim	with	
<Space>qq	and	be	on	your	way.	Tomorrow	morning,	open	it	to	the	dashboard	with	the	
nvim	command	and	hit	s	to	be	on	your	way.	

If	you	forgot	to	open	it	right	away	and	the	dashboard	is	long	gone,	you	can	use	<Space>qs	
to	restore	Neovim	to	wherever	it	was	when	you	last	closed	it	(though	any	Qiles	you	modiQied	
and	saved	in	the	meantime	will	still	have	their	new	contents).	

If	you	have	opened	Neovim	temporarily	and	want	to	close	it	without	wiping	out	the	session	
that	was	saved	the	last	time	you	closed	it,	hit	<Space>qd	at	any	time	after	you	open	Neovim	
and	before	you	close	it.	In	some	contexts	(notably,	git	commit	messages),	this	happens	
automatically	so	you	don’t	have	to	worry	about	making	a	commit	after	you	close	the	editor	
and	then	losing	your	session.	

Summary

In	this	chapter,	we	learned	about	Vim’s	buffers,	windows	and	tabs,	and	how	they	are	
different	not	only	from	each	other,	but	also	from	many	other	window	management	
paradigms.	Vim	has	the	same	concepts	as	other	editors,	but	they	are	sometimes	mixed	or	
named	in	different	ways.	

We	also	covered	code	folding	to	make	it	easier	to	wrangle	large	Qiles,	and	session	
management	to	return	to	your	window	conQiguration	and	come	back	to	it	later.	This	is	
particularly	useful	when	combined	with	LazyVim’s	lightning	fast	startup	time.	There’s	no	
reason	to	keep	your	code	editor	open	consuming	memory	when	you	aren’t	actually,	you	
know,	editing	code.	

In	the	next	chapter,	we’ll	dig	into	some	of	the	terriQic	programming	language	support	that	
LazyVim	provides.	This	is	arguably	the	one	thing	that	made	VS	Code	amazing,	but	the	Vim	
community	has	learned	from	its	competitors	and	eventually	outmatched	them.	

Chapter 10: Programming Language Support

Chapter	10:	Programming	Language	Support	-	LazyVim	for	Ambitious	Developers	

Visual	Studio	Code	brought	the	world	the	concept	of	language	servers,	and	all	of	the	other	
editors	jumped	on	the	idea.	Early	incarnations	of	language	server	protocol	in	Vim	were	
frustrating	and	clunky	and	required	plugins	that	tended	to	be	fragile	and	complicated.	

Then	NeoVim	decided	to	build	support	for	language	servers	into	the	editor	itself.	NeoVim’s	
built-in	support	is	still	frustrating	and	clunky,	but	over	time,	robust	and	simple	plugins	have	
evolved	to	make	the	language	server	experience	almost	automatic.	LazyVim	represents	the	
pinnacle	of	that	evolution.	

In	addition,	NeoVim	also	has	built-in	support	for	TreeSitter,	a	powerful	library	for	parsing	
and	identifying	abstract	syntax	trees	in	source	code	while	it	is	being	edited,	and	LazyVim	is	
conQigured	with	the	plugins	needed	to	make	TreeSitter	Just	Work™.	

Language	Server	protocol	gives	us	support	for	things	like	code	navigation,	signature	help,	
auto-completion,	certain	highlighting	and	formatting	behaviours,	diagnostics,	and	more.	
TreeSitter	gives	us	better	syntax	highlighting,	code	folding,	and	syntax	based	navigation	
such	as	provided	by	the	S	command	you	already	know.	

There	are	two	main	tools	for	working	with	language	servers	in	LazyVim:	various	language	
Lazy	Extras,	and	the	Mason.nvim	plugin.	We’ll	get	to	know	both	of	these	and	then	learn	how	
to	better	use	some	of	the	tooling	they	provide.	

The lang.* Lazy Extras

We’ve	already	used	LazyVim	extras	for	plugin	conQiguration,	and	I	told	you	to	install	the	
extras	for	whichever	languages	you	use	regularly.	These	extras	include	preconQigured	
plugins	that	give	best-in-class	support	for	common	programming	languages.	Most	of	them	
ship	with	preconQigured	language	servers	and	many	include	additional	NeoVim	plugins	that	
are	useful	with	those	languages.	

In	most	cases,	once	you	install	these	extras	things	will	work	out	of	the	box,	and	you	won’t	
have	to	learn	any	new	keybindings	for	the	commands	each	language	provides.	However,	it	
wouldn’t	hurt	to	read	the	Readmes	for	the	plugins	the	extra	installs	(accessible	by	looking	
up	the	Extra’s	documentation	on	the	LazyVim	website	and	clicking	the	headings)	to	make	
sure	you	aren’t	missing	out	on	any	commands	the	language	provides.	For	example,	the	
python	extra	ships	with	the	venv-selector.nvim	plugin	that	allows	you	to	activate	many	
types	of	Python	virtual	environments	either	automatically	or	on	demand.	LazyVim	installs	a	
keybinding	to	open	the	virtualenv	selector	using	<Space>cs	where	<Space>c	is	the	“Code”	
submode.	

Mason.nvim

The	Lazy	Extras	may	not	install	everything	you	need.	For	example,	instead	of	the	default	
Typescript	formatting	and	linting	tools,	I	prefer	to	use	a	new	hyper-fast	up-and-comer	
called	Biome.	

To	install	things	like	this,	you	can	use	the	Mason.nvim	plugin,	which	is	pre-installed	with	
LazyVim.	To	open	Mason,	use	the	<Space>cm	keybinding.	The	window	that	pops	up	looks	
similar	to	the	lazy.nvim	and	Lazy	Extras	Qloating	window,	although	it	ships	with	
annoyingly	unrelated	keybindings.	

Mason	is	effectively	a	very	large	database	of	programming	language	support	tooling,	
including	language	servers,	formatters,	and	linters,	along	with	the	instructions	to	install	
them.	

Mason.nvim	does	assume	a	certain	baseline	is	already	installed	on	your	system;	for	example	
if	you	are	going	to	install	something	that	is	Rust-based,	you	better	have	a	cargo	binary,	and	
if	you	are	going	to	install	something	that	requires	Python	support,	Python	and	pip	need	to	
be	available.	In	most	cases,	if	you	are	coding	in	a	given	language,	you	already	have	the	tools	

Mason	needs	to	do	its	thing.	The	main	thing	that	Mason	takes	care	of	is	ensuring	that	the	
tools	are	installed	in	such	a	way	that	other	NeoVim	plugins	can	Qind	them.	

The	hardest	part	with	Mason	is	knowing	what	tool	you	want	to	install.	I	was	already	using	
Biome	when	I	set	up	LazyVim,	so	I	knew	I	was	going	to	need	to	install	editor	support	for	it.	
That	was	no	problem;	just	Qind	biome	in	the	Mason	list	(like	any	window,	it	is	scrollable,	
searchable,	and	seekable,	and	Mason	helpfully	puts	everything	in	alphabetical	order).	

But	when	I	started	working	on	this	book,	I	decided	I	needed	an	advanced	Markdown	
formatter,	and	I	had	no	idea	which	one	to	use.	I	could	search	the	window	for	markdown	and	
then	press	Enter	on	any	matching	lines,	which	gives	a	description	and	some	other	
information,	but	I	had	to	do	some	research	with	a	web	browser	and	AI	chat	bot,	(along	with	
a	little	trial	and	error)	before	I	found	the	right	tool	for	me.	

Unfortunately,	I	can’t	help	you	with	Qiguring	out	what	is	right	for	you,	but	once	you	Qind	the	
tool	in	Mason,	just	use	i	to	install	the	package	under	the	cursor.	The	only	other	command	
you	will	use	frequently	in	Mason	is	Shift-U	to	update	all	installed	tools,	and	you	can	look	
up	the	rest	with	g?.	

Valida/ng Things Installed Cleanly

As	good	as	both	LazyExtras	and	Mason	are	at	installing	language	servers,	linting,	and	
formatting	tools,	setting	them	up	is	one	of	the	places	most	likely	to	go	wrong,	no	matter	
which	editor	you	are	using.	So	now	is	a	good	time	to	introduce	several	commands	to	
validate	that	things	are	working	as	expected.	

First,	LazyVim	pops	up	notiQications	in	the	upper	right	corner,	as	you	have	seen	with	the	
plugin	updates.	These	disappear	after	a	few	seconds.	Every	once	in	a	while,	you	need	to	be	
able	to	refer	back	to	them.	

The	secret	is	to	use	the	keybinding	<Space>sn	to	open	the	“Noice”	search	menu.	Noice	is	
the	plugin	that	provides	those	little	popups.	Most	often,	you’ll	want	to	follow	this	with	
either	an	a	or	an	l	to	see	all	recent	Noice	messages,	or	just	the	last	one.	You	can	also	use	
<Space>snd	to	dismiss	any	currently	open	notiQications,	but	honestly,	by	the	time	you’ve	
completed	those	four	keystrokes,	they	notiQications	have	probably	disappeared	themselves	
already!	

The	second	command	you’ll	use	regularly	is	<Space>cl,	which	runs	the	
command	:LspInfo.	It	displays	information	about	any	language	servers	that	are	currently	
running	and	which	buffers	they	are	attached	to.	For	example,	while	editing	this	Markdown	
document,	my	LSPInfo	window	looks	like	this:	

	

In	this	case,	everything	looks	Qine	(though	I’m	surprised	the	tailwind	server	is	associated	
with	Markdown),	but	if	your	LSP	isn’t	behaving	correctly,	this	window	might	give	you	a	hint	
as	to	what	the	problem	might	be.	

If	your	LSP	is	having	temporary	problems–like	showing	incorrect	diagnostics	or	unable	to	
Qind	a	Qile	you	know	is	there–sometimes	it	just	needs	to	be	given	a	good	kick	
with	:LspRestart.	The	Svelte	language	server	has	a	nasty	habit	of	not	picking	up	new	Qiles,	
so	I’ve	been	using	this	one	often	enough	lately	to	add	a	keybinding	for	it.	Most	language	
servers	are	more	cooperative,	though.	

Two	other	super	useful	commands	are	:checkhealth	and	:LazyHealth.	Both	provide	
information	about	the	health	of	various	installed	plugins.	The	former	is	a	NeoVim	command	
that	plugins	can	register	themselves	with	to	provide	plugin	health	information,	while	the	
latter	provides	LazyVim	speciQic	information.	There	is	a	lot	of	overlap	in	the	output,	but	I	
Qind	the	:LazyHealth	output	is	easier	to	read,	and	the	:checkhealth	output	to	be	a	bit	
more	comprehensive.	So	I	usually	use	:LazyHealth	Qirst	and	switch	to	checkhealth	only	
if	:LazyHealth	didn’t	provide	the	information	I	need.	

Don’t	expect	to	see	green	check	marks	across	the	board;	you’ll	make	yourself	crazy.	For	
example,	my	checkhealth	output	contains	a	bunch	of	warnings	from	Mason:	

	

Tools	that	I	have	used	recently	(and	also	Ruby	for	some	reason)	are	installed,	and	I	have	
warnings	for	languages	that	I	don’t	generally	need	to	edit	Qiles	in.	So	if	you	don’t	code	in	
Java,	there’s	no	reason	to	drive	yourself	crazy	trying	to	make	the	java	warning	go	away.	

Diagnos/cs

Language	Servers	fulQill	several	useful	functions,	including	identifying	code	problems,	
linting,	formatting,	context-aware	code	navigation	and	documentation.	We’ll	discuss	all	of	
these	between	this	and	the	next	chapter.	

We	already	got	a	peek	at	diagnostics	in	an	earlier	chapter,	when	we	discussed	jumping	
between	error	messages	with	the	unimpaired	keybindings	[d,	[w,	[e,]d,]w,	and]e.	
Diagnostics	show	up	as	little	squiggles	under	speciQic	sections	of	text	and	when	you	jump	to	
them,	you	usually	get	a	small	overlay	window	telling	you	what	is	wrong	at	that	location.	For	
example,	I	have	a	simple	typo	causing	an	error	in	this	screenshot:	

	

I	misspelled	“tracingMiddleware”,	and	I	get	a	helpful	error	message	on	that	line	in	the	inlay	
hints,	and	a	window	pops	up	when	I	navigate	to	that	error	with]d.	This	window	sometimes	
has	more	information	than	the	inlay	hint.	In	addition,	the	line	that	imports	the	correctly	
spelled	variable	is	showing	a	hint	telling	me	that	it	isn’t	used.	

The	colour	of	the	diagnostic	conveys	the	severity–whether	it	is	a	hint,	a	warning,	or	an	
error–so	you	can	decide	whether	it	is	valuable	to	Qix.	I	generally	try	to	either	Qix	or	silence	
all	errors,	as	they	become	less	useful	if	there	is	much	noise.	

If	the	window	doesn’t	pop	up	when	you	navigate	to	the	diagnostic,	you	can	use	the	
<Space>cd	keybinding	to	invoke	it	as	long	as	your	cursor	is	positioned	somewhere	within	
the	underlined	text.	You	can	make	the	window	disappear	by	moving	your	cursor	with	any	
motion	key.	

Trouble and Quick Fix

You	can	also	navigate	diagnostics	using	the	Trouble	menu.	Trouble	is	a	LazyVim	plugin	that	
provides	an	“enhanced	quick	Qix”	experience.	Which	is	probably	meaningless	to	you	if	you	
are	new	to	Vim	and	don’t	know	what	quick	Qix	means!	

The	quick	Qix	window	is	essentially	a	list	of	Qiles	and	line	numbers	that	have	been	tagged	as	
“interesting”	for	some	reason,	where	that	reason	depends	on	context.	It	can	be	used	to	
represent	multi-Qile	search	results,	diagnostics,	compiler	error	messages,	and	more,	
depending	on	how	you	open	it.	You	can	easily	hop	between	the	targeted	locations,	making	
changes	or	corrections	without	losing	the	context	of	what	you	were	searching	for.	

In	its	simpler	form,	Trouble	is	the	same	thing,	just	a	little	bit	prettier	to	look	at,	with	
colours,	icons,	and	nice	groupings	when	Qix	locations	are	in	multiple	Qiles.	

However,	Trouble	is	rather	tricky	to	talk	about	right	now,	because	at	the	time	of	writing	
there	is	a	new	Trouble	v3	beta	that	can	do	a	lot	more	than	that	You	can	enable	the	beta	from	
the	LazyVim	Extras	menu,	although	the	odds	are	that	by	the	time	this	is	published	it	will	
already	be	the	default.	It	supersedes	some	other	plugins,	and	I	will	be	discussing	Trouble	v3	
instead	of	its	alternatives	later	in	this	and	the	next	chapter.	

The	contents	of	the	quickQix	and	trouble	windows	depend	entirely	on	how	you	open	them.	
Most	of	them	are	accessible	from	the	<space>x	(I	assume	the	x	stands	for	“QiX”)	menu,	
which	looks	something	like	this:	

	

Let’s	take	to-dos	as	an	example,	as	I	have	a	lot	of	them	in	this	book.	It’s	weird	saying	that	
because	they’ll	be	gone	by	the	time	you	see	it,	but	this	screenshot	will	live	on:	

	

The	cool	thing	about	this	list	of	locations	is	that	they	are	not	all	in	the	same	Qile.	Without	
Trouble,	I	could	navigate	between	to-dos	in	current	Qile	using	the	[t	and]t	keys.	However,	
using	Trouble,	I	can	navigate	between	to-dos	in	multiple	Qiles	by	moving	my	cursor	to	the	
appropriate	line	in	the	trouble	window	and	hitting	Enter.	It	will	open	the	Qile	and	move	the	
cursor	right	to	the	“troubling”	line.	

Or	you	can	use	the	commands	[q	and]q,	which	will	navigate	between	quickQix	OR	trouble	
locations,	no	matter	which	Qile	they	are	in,	without	ever	focusing	the	Trouble	window.	

For	diagnostics,	open	the	trouble	menu	with	<Space>xx	or	<Space>xX.	The	lowercase	
version	shows	the	diagnostics	in	the	current	Qile	for	a	quick	overview	while	the	“but	bigger”	
uppercase	X	shows	all	the	diagnostics	in	the	current	workspace	(although	it	depends	a	bit	

on	the	language	servers;	some	language	servers	only	show	you	diagnostics	for	all	currently	
open	buffers,	not	the	whole	project).	

If	you’re	wondering	what	the	“Location	List”	is,	it’s	a	quickQix	window	that	is	associated	
with	the	current	window	(NOT	buffer).	I	never	use	it;	my	brain	can	only	handle	Qixing	one	
problem	at	a	time,	even	if	it	is	in	hundreds	of	Qiles!	

We’ll	meet	the	Trouble	window	again	when	we	discuss	searching	in	a	couple	more	
chapters.	

Code Ac/ons

One	of	the	things	that	made	VS	Code	seem	magical	when	it	came	out	was	code	actions.	Not	
that	they	existed,	as	the	concept	has	been	around	for	a	long	time,	but	that	they	WORKED.	
Nowadays,	we	all	kind	of	take	them	for	granted.	

You	may	be	used	to	accessing	code	actions	by	moving	your	hands	to	the	mouse	and	clicking	
a	light	bulb	or	right	clicking	a	diagnostic.	In	LazyVim	it	is	(of	course)	a	keybinding.	Navigate	
to	a	diagnostic	using	whatever	keybindings	work	for	you	(I	live	by]d,	personally)	and	then	
invoke	the	<Space>ca	menu	where	c	and	a	mean	“code	action.”	A	picker	menu	will	pop	up	
with	one	of	sometimes	several	actions	you	can	take.	You	can	use	the	arrow	keys	or	
<Escape>	followed	by	j	and	k	to	navigate	between	them,	or	you	can	enter	a	number	or	any	
text	from	the	line	to	Qilter.	Hit	<Enter>	to	perform	the	action,	or	<Escape><Escape>	to	
cancel	the	menu	(just	one	escape	allows	you	to	enter	normal	mode	in	the	search	box	so	you	
can	use	the	many	LazyVim	navigation	keystrokes	that	you	are	becoming	used	to).	

Lin/ng

Linting	is	mostly	handled	using	the	nvim-lint	plugin	instead	of	the	LSP.	This	was	a	major	
pain	point	in	my	pre-LazyVim	days	because	getting	the	LSP	and	linter	cooperating	often	
required	some	serious	troubleshooting.	And	then	throw	formatting	into	the	mix	and	you’ve	
lost	a	day	or	two.	To	be	fair,	this	was	true	when	I	used	VS	Code,	too.	

Using	LazyVim,	it	is	actually	likely	that	you	don’t	know	who	is	doing	the	linting	for	you.	I	
honestly	don’t.	Some	of	my	diagnostics	come	from	the	LSP	and	others	come	from	the	linter.	
I	don’t	bother	to	question	the	source	of	the	errors;	I	just	Qix	them.	

The	hard	part	with	linting	(at	least,	when	it	doesn’t	work	automatically)	will	be	making	
sure	that	the	appropriate	linter	is	installed	(Mason	has	your	back	here),	and	conQigured	
correctly.	If	you	are	lucky	and	the	languages	you	love	to	work	in	have	Lazy	Extras,	then	it	is	
probably	already	conQigured	correctly.	Otherwise,	you	may	have	to	do	a	little	tweaking.	The	
tweaking	involved	is,	sadly,	language-dependent,	but	you’ll	probably	need	something	like	
this	in	a	example	extend-nvim-lint.lua	that	in	your	plugins	directory:	

return {	
 "mfussenegger/nvim-lint",	
 opts = {	
 linters_by_ft = {	
 typescript = {	
 -- lint settings for typescript	
 }	
 },	
 },	
}	

Read	the	nvim-lint	Readme	for	more	information	and	refer	to	the	LazyVim	
documentation	for	this	conQiguration	if	you	need	further	clariQication.	

The	nice	thing	is	that	once	you	have	your	linting	conQigured,	the	errors	will	show	up	using	
the	same	diagnostics	described	above	and	you	can	engage	with	them	using	the	same	
keybindings,	trouble	window,	code	actions,	etc.	

Forma6ng

Similar	to	linting,	code	formatting	can	be	handled	by	some	LSPs,	but	people	have	realized	
that	using	the	language	server	is	often	more	complicated	than	just	invoking	a	formatter	
directly.	So	LazyVim	ships	with	the	conform.nvim	plugin.	

Also	similar	to	linting,	if	you	are	lucky,	it	will	Just	Work™	after	you	install	the	appropriate	
Lazy	Extra	and/or	Mason	tool.	However,	if	you	don’t	like	the	default	formatter	(or	it’s	not	
working),	you	will	have	to	familiarize	yourself	with	the	LazyVim	and	conform.nvim	
documentation	to	Qigure	out	the	exact	incantation	required.	

The	only	formatter	I’ve	had	to	manually	conQigure	is	using	Prettier	for	Markdown.	It	looks	
eerily	similar	to	the	nvim-lint	conQiguration:	

return {	
 "stevearc/conform.nvim",	
 opts = {	
 formatters_by_ft = {	
 ["markdown"] = { "prettier" },	
 },	
 },	
}	

Once	it’s	set	up	(I	acknowledge	this	may	be	no	mean	feat),	formatting	in	LazyVim	is	
typically	Qire	and	forget:	Save	your	Qile	and	it	formats.	If	you	want	to	invoke	it	manually	

without	saving,	use	the	<Space>cf	keybinding.	I	can’t	stress	how	lucky	you	are	that	this	is	
the	case;	without	LazyVim,	countless	hours	have	been	wasted	(by	me,	and	by	most	every	
vim	user)	trying	to	get	the	autocommands	for	format	on	save	to	work!	

Configuring Non-standard LSPs

If	you	have	installed	an	LSP	that	LazyVim	isn’t	aware	of,	you	may	need	to	tweak	the	nvim-
lspconfig	plugin.	You	will	minimally	need	to	let	it	know	that	it	is	available,	and	possibly	to	
conQigure	it	to	your	needs.	For	example,	one	of	my	favourite	programming	languages	is	
Rescript,	which	doesn’t	have	a	huge	ecosystem	and	therefore,	has	no	LazyVim	extra.	I	was	
able	to	install	the	language	server	with	Mason	easily	enough,	but	I	also	needed	to	add	the	
following	to	my	extend-lspconfig.lua	Qile	for	LazyVim	to	pick	it	up:	

return {	
 "neovim/nvim-lspconfig",	
 opts = {	
 servers = {	
 rescriptls = {},	
 },	
 },	
}	

Summary

In	this	chapter,	we	learned	how	LazyVim	integrates	the	language	server	protocol	that	VS	
Code	brought	to	the	world.	It	is	usually	quick	and	painless,	which	is	more	than	can	be	said	
for	manually	conQiguring	LSPs.	However,	there	may	be	some	headaches	especially	around	
linting	and	formatting.	This	is	true	in	any	editor,	sometimes	they	hold	your	hand	and	
sometimes	they	get	in	your	way.	If	you	get	stuck,	hit	us	up	in	the	LazyVim	discussions	group	
on	Github	(but	search	it	Qirst;	you’re	probably	not	the	Qirst	person	to	have	trouble).	

In	the	next	chapter,	we’ll	learn	more	about	navigating	code	using	LSPs,	TreeSitter,	and	
several	plugins.	

Chapter 11: Naviga/ng Source Files

Chapter	11:	Navigating	Source	Files	-	LazyVim	for	Ambitious	Developers	

In	previous	chapters,	we’ve	learned	many	different	ways	to	navigate	within	a	single	buffer,	
as	well	as	between	open	tabs	and	windows.	This	chapter	will	go	into	detail	of	different	ways	
to	navigate	between	source	Qiles.	

Go To Defini/on

In	my	opinion,	“go	to	deQinition”	is	the	most	valuable	feature	language	servers	have	brought	
us.	Major	IDEs	have	supported	it	for	compiled	languages	for	eons,	but	dynamically	typed	
languages–such	as	my	beloved	Python–have	always	been	hell	for	static	analysis,	and	such	
features	were	often	pretty	hit	or	miss.	

As	one	of	the	best-named	editor	features	of	all	time,	go	to	deQinition	jumps	your	cursor	
from	whatever	keyword	it	is	currently	sitting	on	to	the	place	where	that	keyword	is	deQined,	
regardless	of	what	Qile	it	is	in.	

Most	often,	I	use	this	when	I	am	looking	at	a	call	site	for	a	function	and	want	to	see	the	
function	itself.	A	simple	press	of	gd	(go	to	deQinition	also	has	one	of	the	more	memorable	
LazyVim	keybindings	of	all	time)	will	take	me	there.	

Depending	on	how	good	the	LSP	for	the	language	I	am	editing	is,	this	often	even	allows	me	
to	jump	into	library	Qiles	or	type	declarations	for	third	party	modules	so	I	can	see	what	is	
really	going	on.	

Go	to	deQinition	is	context	dependent,	but	will	usually	do	exactly	what	you	expect.	If	you	are	
looking	at	a	variable,	gd	will	jump	to	wherever	the	variable	is	initialized.	If	your	cursor	is	on	
a	class	name,	it	will	jump	to	wherever	the	class	is	deQined.	

Typically,	once	you’ve	jumped	to	a	deQinition	and	learned	what	you	need	to	learn	from	that	
Qile,	you’ll	immediately	want	to	jump	back	to	where	you	started.	You	can	do	this	easily	using	
Control-o,	as	we	discussed	in	Chapter	3	(and	Control-i	can	move	forward	in	your	jump	
history).	

Go To References

The	inverse	of	the	Go	to	DeQinition	command	is	“go	to	references”.	If	you	are	looking	at	a	
function,	variable,	type,	etc,	and	want	to	see	all	the	places	that	variable	is	accessed,	use	the	
gr	command.	

Unlike	with	a	deQinition	or	declaration,	there	will	typically	be	more	than	one	reference	to	a	
given	word	(A	variable	in	isolation	is	a	useless	variable	indeed).	So	when	you	type	gr	it	
won’t	immediately	jump	to	a	location.	Instead	it	will	pop	up	a	picker	view	of	all	the	
references	to	the	word	that	was	under	your	cursor,	with	all	the	preview	and	Qiltering	luxury	
that	Telescope	and	fzf.lua	always	bring.	

It	is	common	to	want	to	perform	some	action–such	as	a	rename	or	adding	an	argument	or	
what	have	you–at	every	reference.	You	could	keep	showing	the	picker	by	hitting	gr	again	or	
by	using	the	<Space>sR	keybinding	which	resumes	your	previous	picker	search.	However,	
it	is	often	much	more	useful	to	use	the	trouble	list	that	we	learned	about	in	the	previous	
chapter.	

To	do	that,	use	gr	to	show	the	references	in	a	picker	as	usual.	Then	use	Control-t	to	show	
each	of	the	Qiles	in	the	trouble	window.	Now	you	can	use]q	and	[q	to	jump	between	them	
without	going	to	the	trouble	of	showing	the	picker	again.	If	you’d	rather	use	the	less	fancy	
quick	Qix	window,	use	Control-q	from	the	picker	instead	of	Control-t.	

Tip:	Control-t	and	Control-q	work	on	most	pickers.	I	recommend	getting	used	to	using	
them	any	time	you	want	a	less-temporary	list	of	items	than	will	give	you.	

Context-specific Help

Most	non-modal	editors	show	you	some	help	or	“hover”	text	when	you	hold	your	mouse	
over	a	word	or	symbol.	The	quantity	and	value	of	this	text	varies	widely	depending	on	the	
LSP,	but	usually	includes	a	function	signature	and	documentation	for	the	word	under	the	
cursor.	

It’s	probably	possible	to	set	up	Neovim	to	show	help	texts	on	hover,	but	why	would	you	
move	your	hand	to	the	mouse	when	LazyVim	has	such	amazing	navigation	on	the	
keyboard?	Instead,	use	the	(shifted)	K	keybinding.	Yeah,	K	is	a	pretty	stupid	mnemonic	to	
remember,	but	H	and	?	were	already	taken.	In	fact,	the	K	stands	for	“keywordprog”,	which	is	
a	legacy	Vim	concept	that	has	been	superseded	by	language	servers	in	the	modern	world.	
So	LazyVim	reused	the	keybinding.	

Lis/ng symbols

Another	handy	LSP	feature	is	to	search	all	the	symbols	in	the	current	Qile	or	project.	If	you	
are	editing	a	particularly	long	Qile	and	need	to	jump	to	a	function	that	is	not	terribly	close	to	
your	cursor,	you	might	use	the	<Space>ss	command	(mnemonic	is	“search	symbols”).	As	
hinted	by	the	double	s,	this	is	expected	to	be	a	fairly	common	action.	

The	dialog	that	pops	up	should	be	fairly	familiar	by	now,	as	it’s	the	usual	picker:	

	

So	you	already	know	how	to	use	it.	However,	I	want	to	remind	you	of	a	couple	Telescope	
tips	that	make	it	more	useful:	

Most	of	the	time	when	I’m	using	this	symbol	picker,	I	only	care	about	functions,	or	
sometimes	classes.	So	the	Qields	and	properties	scattered	in	the	screenshot	above	are	just	a	
distraction.	It	is	possible	to	conQigure	the	picker	to	only	show	certain	kinds	of	symbols,	but	I	
prefer	a	quick	trick	that	allows	me	to	narrow	it	down	to	just	functions:	type	(part	of)	the	
word	function.	

Since	the	picker	includes	the	word	“function”	in	the	second	column	of	the	results,	the	picker	
merrily	Qilters	out	all	the	lines	that	don’t	have	that	word	in	them.	Handy.	

Better	yet,	I	can	input	a	space	after	the	word	“function”	to	inform	the	picker	to	perform	
subsequent	searching	back	in	the	Qirst	column.	So	“func	api”	Qilters	all	functions	that	have	
the	word	“api”	in	them.	

My	second	tip	is	to	not	forget	about	the	Control-t	and	Control-q	shortcuts	to	dump	
picker	results	into	the	quickQix	or	trouble	list.	It	generates	a	quick	and	dirty	table	of	
contents	of	whatever	symbols	you	Qiltered	for.	

If	you	want	to	search	all	the	symbols	in	your	whole	project,	use	the	“but	bigger”	mnemonic.	
<Space>sS	will	perform	such	a	search.	However,	be	warned	that	not	all	LSPs	support	
workspace	symbol	search.	Some	only	search	in	currently	open	Qiles,	and	even	many	of	those	
that	fully	support	workspace	symbol	search	are	unusably	slow.	

NeoTree also has a symbols outline

If	you	like	the	NeoTree	sidebar	for	Qile	picking,	you	may	appreciate	that	it	also	supports	a	
symbol	list	for	the	currently	focused	Qile.	It	looks	similar	to	the	picker	selector	but	has	the	
(dubious,	in	my	opinion)	beneQit	of	always	being	visible.	

At	the	time	of	writing,	NeoTree	claims	that	the	symbol	picker	is	“experimental”	in	its	
Readme,	so	there	isn’t	a	keybinding	to	display	it,	at	least	by	default.	

Instead,	use	the	command	:Neotree document_symbols	to	render	the	symbol	picker	in	
your	Neotree	sidebar:	

	

You	can	navigate	to	a	symbol	in	the	document	either	by	double	clicking	it	with	your	mouse	
or	by	moving	your	cursor	to	the	line	that	contains	the	symbol	you	want	to	jump	to	and	
pressing	<Enter>.	You	can	also	use	s	or	S	to	open	a	new	view	of	the	buffer	at	the	given	
symbol	in	a	vertical	or	horizontal	split.	

If	you	Qind	that	you	just	can’t	get	enough	of	the	NeoTree	symbol	picker,	you’ll	probably	want	
to	add	a	keyboard	shortcut	for	that	command.	The	easiest	way	is	to	add	the	following	line	to	
your	keymaps.lua:	

vim.keymap.set(
 "n",	
 "<leader>sO",	
 "<cmd>Neotree document_symbols<cr>",	
 { desc = "Document Symbols (Neotree)" })	

Feel	free	to	use	a	different	keymap	if	<Space>s<Shift-O>	doesn’t	suit.	

However,	it	is	more	common	to	group	keymaps	with	the	conQiguration	for	the	plugin	that	
the	keymap	invokes.	So	you	could	also	do	something	like	this	(in	any	.lua	Qile	in	the	plugins	
directory,	say	extend-neotree.lua):	

return {	
 {	
 "nvim-neo-tree/neo-tree.nvim",	
 keys = {	
 {	
 "<leader>sO",	
 "<cmd>Neotree document_symbols<cr>",	
 desc = "Document Symbols (Neotree)",	
 },	
 },	
 },	
}	

This	is	especially	useful	if	you	decide	to	extend	or	customize	other	aspects	of	the	Neotree	
conQiguration	in	addition	to	keymaps.	

…and so does Trouble!

You	can	also	open	a	symbols	outline	using	the	Trouble	plugin.	Unlike	most	trouble	
windows,	it	opens	in	a	right	sidebar	by	default.	It	creates	a	lovely	tree	view	and	you	can	
even	collapse	and	expand	the	tree	nodes	using	the	folds	keybindings	we	discussed	in	
Chapter	9.	

	

You	can	resize	the	trouble	window	using	the	same	keybindings	you	usually	use	for	resizing	
windows	(\<	and	\>).	As	you	move	the	cursor	over	the	trouble	window,	the	symbol	it	is	
over	will	automatically	scroll	into	view.	

The	fastest	way	to	use	the	trouble	window	is	to	use	seek	mode.	Recall	that	seek	mode	can	
jump	to	any	currently	visible	window,	which	includes	trouble.	So	if	I	am	currently	editing	
the	above	Qile	and	my	cursor	is	currently	somewhere	near	the	end	of	the	Qile,	I	can	use	spub	
to	enter	seek	mode	and	search	for	the	characters	“pub”.	This	will	place	a	label	on	the	
publicKeyToken	in	the	trouble	window.	If	I	hit	that	label,	my	cursor	jumps	to	the	trouble	
window	and	my	editor	window	immediately	scrolls	to	the	function	in	question.	Now	I	just	
have	to	hit	Enter	to	move	the	cursor	back	to	the	Qile	I’m	editing.	

Context

The	nvim-treesitter-context	extra	is	a	helpful	way	to	know	where	you	are	in	the	
current	Qile.	It	uses	treesitter	to	Qigure	out	which	functions	and	types	you	are	in,	and	then	
pins	the	lines	that	deQine	those	types	to	the	top	of	the	editor.	Enable	it	as	usual	by	
visiting	:LazyExtras	and	hitting	x	over	the	line	that	contains	nvim-treesitter-
context.	

This	plugin	keeps	track	of	which	class	or	function	your	cursor	is	currently	in.	If	the	function	
or	type	deQinition	is	so	long	that	the	signature	scrolls	off	the	screen,	it	will	helpfully	copy	
that	signature	into	the	Qirst	line	or	lines	of	the	code	window,	highlighted	with	a	slightly	
different	background	colour.	

This	is	easier	to	describe	with	a	reference	image,	so	consider	this	screenshot:	

	

In	this	image,	the	Qirst	two	lines,	which	are	slightly	shaded,	are	providing	context,	rather	
than	being	part	of	the	buffer.	The	Qirst	line	tells	me	that	I	am	in	the	DexieApiClient	class	
and	the	second	line	tells	me	that	I’m	currently	looking	at	the	forceAddMemberToRealm	
function.	

Especially	notice	the	relative	line	number	column.	The	class DexieApiClient	line	is	110	
lines	above	my	current	cursor	position,	and	the	async forceAddMemberToRealm	line	is	
28	lines	above	it.	The	Qirst	visible	line	of	the	function	is	only	14	lines	above	my	current	
cursor	position.	

The	effect	is	quite	subtle,	but	the	deQinitions	that	make	their	way	into	this	context	section	
tend	to	be	really	useful	while	coding.	If	they	Qit	on	one	line	I	can	see	function	signatures	and	
return	types.	You	really	don’t	notice	how	often	you	have	to	scroll	up	to	see	what	a	variable	

is	named	in	a	function	signature	until	you	don’t	have	to	do	it	anymore!	And	if	you	DO	need	
to	scroll	up	to	the	signature,	simply	type	the	relative	line	number	followed	by	k	and	you’re	
there	with	no	searching	required.	

If	you	need	to	disable	the	context	temporarily,	use	the	keybinding	<Space>ut.	We	haven’t	
seen	much	of	the	<Space>u	menu	yet,	where	you	can	toggle	various	User	Interface	effects.	
This	is	largely	because	the	default	user	interface	is	conQigured	well	enough	that	you	don’t	
want	to	change	it	often!	

Naviga/ng with (book)marks

You	already	know	how	to	navigate	through	your	history	with	Control-o	and	Control-i,	
and	to	jump	around	documents	effectively	using	a	wide	variety	of	motions.	

Vim	also	includes	a	“bookmarks”	feature,	although	it’s	referred	to	as	“marks”	I	assume	
because	the	m	character	was	still	free	on	the	vim	keymaps.	

Marks	are	built-into	Vim	and	LazyVim	has	(as	usual)	added	a	few	minor	improvements.	

Much	like	the	registers	that	we	covered	in	an	earlier	chapters,	marks	can	be	assigned	to	
each	letter	of	the	alphabet.	Additionally,	certain	punctuation	characters	represent	special	
system-set	marks	that	you	can	jump	to,	but	not	set.	

To	set	a	mark	on	a	line,	precede	any	letter	character	with	the	letter	m.	So	ma	will	set	the	
mark	a	on	the	current	line.	You	can	tell	that	this	line	is	marked	with	an	a	because	there	is	an	
a	character	in	the	gutter	to	the	left:	

	

Now	I	can	jump	to	the	line	marked	with	a	from	anywhere	in	the	current	4ile	by	using	an	
apostrophe	followed	by	a.	

I	don’t	use	this	very	often	because	other	tools	tend	to	be	more	useful	for	navigating	a	Qile	
than	manually	setting	a	mark.	However,	if	I	had	marked	the	line	with	a	capital	letter	
(e.g.	mA),	I	would	be	able	to	jump	to	the	mark	no	matter	which	Qile	was	open	using	'A.	

So	essentially,	you	can	have	up	to	26	local	marks	for	each	Qile	you	ever	open,	as	well	as	26	
global	marks	that	you	can	access	from	any	Qile.	

Conveniently,	if	I	just	type	a	single	apostrophe	(in	normal	mode),	LazyVim	will	pop	up	a	
menu	of	all	the	marks	currently	available	to	jump	to:	

	

This	list	shows	the	lowercase	a	mark	that	I’ve	set	in	this	Qile,	several	system	marks	that	I	
can	jump	to	using	punctuation	(notice	the	descriptions	for	each	of	those	marks	to	the	right	
so	you	don’t	have	to	memorize	them),	two	global	marks	I	use	to	jump	to	my	kitty	and	Qish	
conQiguration	Qiles,	and	the	ten	numbered	marks.	

I	Qind	the	numbered	marks	to	be	kind	of	useless.	The	essentially	refer	to	the	Qile	and	cursor	
location	of	the	last	time	you	closed	Neovim.	I	don’t	close	Neovim	that	often	unless	I’m	
editing	a	commit	message	or	pull	request	description	in	a	temporary	instance,	so	my	
numbered	marks	are	mostly	just	those	kinds	of	temporary	Qiles.	If	I	need	to	get	back	to	
where	I	was	previously,	the	<Space>qs	keybinding	to	restore	session	is	typically	more	
useful	than	the	numbered	marks.	

The	menu	that	pops	up	when	you	press	the	apostrophe	key	is	usually	sufQicient	to	Qind	
marks,	but	you	can	also	use	the	<Space>sm	keybinding	to	search	marks	in	a	picker.	I	don’t	
usually	have	enough	marks	active	for	this	to	be	useful,	but	if	you’ve	got	a	lot	of	global	and	
local	marks	set	and	you	can’t	remember	which	letter	is	associated	with	a	given	one,	it	might	
help	to	use	the	picker	to	search	for	the	contents	of	the	line	you	have	marked.	

Once	you’ve	set	a	mark,	you’ll	eventually	be	dogged	by	the	question	“how	do	I	get	rid	of	it?”	
Deleting	marks	is	probably	up	there	with	“how	do	I	quit	vim”	for	common	queries!	There	
isn’t	a	keybinding	for	deleting	marks.	Instead,	you	need	to	use	the	command	:delmarks
<mark>	to	delete	the	given	mark.	So	to	get	rid	of	the	a	mark	in	this	Qile,	I	used	the	
command	:delmarks a.	You	don’t	have	to	be	on	the	marked	line	to	delete	the	mark.	

Marks	can	be	used	in	place	of	line	numbers	in	ranges	in	command	mode.	For	example,	If	
you	want	to	write	the	text	between	mark	a	and	mark	b	to	a	Qile,	you	could	do	:'a,'bwrite
somefile.txt.	If	you’ve	seen	the	'<,'>	in	front	of	colon	lines	when	you	have	text	selected,	
that	is	because	'<	and	'>	represent	the	start	and	end	of	the	most	recent	visual	selection.	So	
rather	than	manually	setting	ma	and	mb	you	can	visually	select	the	thing	you	want	to	write	
and	have	the	marks	pre-Qilled	for	you.	

You	can	also	use	'<	and	'>	to	jump	to	the	beginning	or	end	of	the	most	recent	selection	
even	if	it	has	since	been	deselected.	

The	other	symbol	mark	that	I	use	a	lot	is	'.	which	jumps	to	the	last	place	I	inserted	or	
changed	text.	This	can	sometimes	be	quicker	than	a	series	of	Control-o	keypresses.	

Summary

In	this	chapter,	we	learned	how	to	navigate	code	Qiles	using	goto	deQinition	and	references,	
and	various	document_symbol	plugins.	

We	saw	how	LazyVim	gives	us	context	on	our	current	location	in	the	document	and	how	to	
look	up	documentation	for	the	symbol	under	the	cursor.	

Finally,	we	covered	vim	marks,	a	more	manual	process	of	tracking	locations	that	you	may	
want	to	jump	to.	

In	the	next	chapter,	we’ll	learn	all	about	searching	and	substituting	text	both	in	the	current	
Qile	and	globally	across	a	project.	

Chapter 12: Searching…

Chapter	12:	Searching…	-	LazyVim	for	Ambitious	Developers	

As	with	all	the	remaining	topics	in	this	book,	it’s	kind	of	amazing	that	we’ve	gotten	this	far	
without	covering	searching.	Find	and	replace	in	Vim	has	always	been	far	more	powerful	
and	nuanced	than	in	most	editors,	which	just	give	you	a	little	dialog	with	three	Qields	and,	if	
you’re	lucky,	a	check	box	to	specify	regular	expressions.	

LazyVim,	as	usual,	extends	Neovim’s	already-powerful	search	feature	to	make	it	both	easier	
to	use,	more	useful,	and	prettier.	You	already	know	about	the	neat	Seek	(s)	and	treesitter	
(S)	modes	for	navigating	to	and	selecting	objects	you	can	see,	as	well	as	their	remote	
operator-pending	objects	counterparts:	r	and	R.	These	all	work	Qine	so	long	as	the	text	you	
are	looking	for	is	currently	visible.	However,	when	you	need	to	search	a	Qile	and	have	it	
automatically	scroll	to	search	results,	they	are	not	sufQicient.	

Search in current file

To	search	for	a	pattern	in	vim	use	the	/	command	in	normal	mode.	The	mnemonic	is	that	
the	/	key	is	also	the	question	mark	key,	and	searching	for	something	is	a	kind	of	question.	

Even	many	tools	that	are	not	considered	“modal”	have	adopted	vi’s	/	as	a	
command	to	invoke	search.	For	example,	the	exceptional	Linear	task	tracking	tool	
uses	/	to	begin	a	search,	as	does	the	ubiquitous	GitHub.	

The	Qirst	time	you	type	a	(normal	mode)	/	in	Lazy	Vim,	there	is	a	good	chance	you’ll	lose	
your	cursor!	It	will	not	pop	up	a	new	window	in	the	editor.	Instead,	/	will	take	over	the	
current	Qile’s	status	bar	with	a	little	magnifying	glass	icon:	

	

In	this	image,	I’ve	typed	/dat.	The	/	initiates	search	mode,	and	then	I	searched	for	dat.	My	
cursor	is	in	the	search	box.	

As	you	can	see,	LazyVim	has	helpfully	highlighted	all	the	(visible)	matches	for	“dat”	
(including	this	one)	The	“primary”	result	will	always	be	the	Qirst	matching	result	after	the	
point	where	your	cursor	was	when	you	hit	/.	

Your	cursor	will	jump	to	the	primary	result	if	you	press	Enter	to	conQirm	your	search	
(Press	Escape	to	cancel	it,	as	usual).	

At	this	point,	you	are	back	in	normal	mode	and	can	edit	the	buffer	as	usual.	However,	you	
will	notice	that	all	the	highlighted	results	are	still	highlighted.	You	can	easily	jump	to	the	
next	result	using	the	n	(for	next)	key.	This	command	accepts	a	count,	so	you	can	use	3n	to	
jump	to	the	third	result	after	the	current	cursor	position.	

The	search	will	wrap	to	the	top	of	the	document	if	there	are	no	more	matching	results	at	
the	bottom.	If	you	know	how	far	you	need	to	jump,	you	can	use	a	count	with	the	/	command	
as	well,	as	in	3/something	to	jump	forward	to	the	third	something.	Figuring	out	how	far	
you	need	to	jump	requires	some	mental	agility,	though,	so	it’s	usually	faster	to	use	Seek	
mode.	

If	you	n	too	far,	you	can	use	Shift-N	to	move	the	cursor	to	the	previous	result	instead.	And	
if	you	know	you	need	to	jump	to	a	previous	result,	you	can	initiate	the	search	with	?	
(i.e.	shift-/)	instead	of	just	/.	

If	you	have	used	Vim	before,	I	should	warn	you	that	this	behaviour	of	n	and	N	is	different	
(and	more	useful)	from	the	default	Neovim	behaviour.	They	used	to	“repeat	the	last	/	or	?	
command,”	so	n	would	continue	up	the	document	if	you	started	with	?.	The	LazyVim	model	
is	easier	to	remember;	n	always	means	“next	down”	and	N	always	means	“previous	up”.	

Ignore case

If	you	enter	your	search	term	as	all	lowercase	letters,	LazyVim	will	ignore	case	by	default,	
but	if	you	include	a	capital	letter	in	your	search	term,	it	will	enable	case	sensitivity.	So	
searching	for	in	will	match	in	and	In,	but	searching	for	In	will	only	match	In.	

If	you	expressly	want	to	search	for	only	lowercase	matches,	you	can	modify	the	search	term	
by	inserting	the	two	characters	\C	(that	C	is	capitalized)	somewhere	in	it.	

Conveniently,	it	doesn’t	have	to	be	at	the	beginning	of	the	search	term;	if	there	is	a	\C	
anywhere	in	the	search	string,	it	will	make	the	whole	search	case	sensitive.	So,	imagine	you	
were	looking	for	the	lowercase	word	“initiate”.	If	you	start	typing	in	and	realize	it’s	
matching	a	bunch	of	unnecessary	In	because	ignore	case	is	enabled,	you	can	append	\C	(so	
you	end	up	with	in\C)	to	switch	to	ignore	case	mode	before	typing	iti	(so	the	total	search	
string	is	in\Citi).	

If	you	want	to	disable	ignore	case	temporarily,	type	the	colon	command	:set
noignorecase.	This	will	only	last	until	you	exit	NeoVim,	or	explicitly	enable	it	again	
with	:set ignorecase.	

If	you	want	to	make	the	change	permanent,	open	your	options.lua	Qile	and	add	
vim.opt.ignorecase = false	somewhere	in	it.	Note	that	now	if	you	want	to	make	any	
speciQic	search	case	insensitive,	you	need	to	use	lowercase	\c	instead	of	\C	in	the	search	
phrase.	

The	\C	trick	seems	kind	of	weird	at	Qirst,	but	when	you	think	about	the	alternative	used	in	
most	code	editors,	where	you	have	to	move	your	hand	to	your	mouse,	target	a	tiny	

checkbox	with	a	label	like	wW,	and	click	it,	then	refocus	the	search	box	and	continue	typing,	
you’ll	probably	decide	that	\C	is	faster.	

Regular expressions

Vim	searches	use	regular	expressions	by	default.	But	they	are	kind	of	strange	regular	
expressions.	

Ok,	I	admit	that	all	regular	expressions	are	kind	of	strange.	Vim’s	are	only	strange	in	
comparison	to	the	pcre-style	regular	expressions	that	are	common	in	most	modern	
programming	languages.	Luckily,	if	you	are	searching	text,	you	probably	don’t	need	the	full	
complexity	the	PERL-compatible	expressions	offer.	

I	don’t	have	space	in	this	book	to	instruct	in	regular	expression	syntax,	so	I’ll	just	mention	
some	of	the	main	go-tos	and	leave	you	to	look	up	the	rest:	

• .	matches	any	single	character.	If	you	need	to	search	for	a	literal	period,	escape	it	
with	\..	

• \S	matches	any	non-whitespace	character.	
• The	*	character	matches	the	preceding	expression	zero	or	more	times.	Notably,	.*	

will	match	any	string	of	characters	of	arbitrary	length.	
• The	\+	string	will	match	the	preceding	expression	one	or	more	times.	(This	is	

notably	different	from	most	regular	expression	parsers	I’ve	seen,	where	you	don’t	
need	the	\	before	the	+	to	match	one	or	more).	It	can	be	combined	with	e.g.	\S	to	
match	any	word	without	spaces:	\S\+.	

• \=	can	be	used	to	match	the	preceding	pattern	zero	or	one	times.	Useful	for	things	
like	https\=:	where	the	“s”	is	optional.	This	pattern	is	usually	?	in	most	regular	
expression	engines,	and	in	fact	\?	also	works	for	this.	However,	it	would	confuse	vim	
when	the	command	to	invoke	search	backwards	is	?,	so	\=	wins.	

• \\	matches	a	literal	backslash	and	\/	matches	a	literal	forward	slash.	

In	general,	if	you	know	Perl	Compatible	regular	expressions,	you’ll	Qind	you	need	a	lot	more	
backslashes	in	vim.	That	said,	the	vast	majority	of	code	editor	searches	are	covered	by	the	
above.	

If	you	want	to	“disable”	regular	expression	matching	for	a	speciQic	search,	place	\V	at	the	
beginning	of	the	line	(or	in	the	middle	of	the	line	if	you	only	need	to	disable	it	for	the	
remaining	part	of	the	search).	The	“V”	stands	for	“very	nomagic”,	and	if	you	want	to	be	
extremely	confused,	type	:help magic.	It	is	so	confusing,	in	fact,	that	you	will	prefer	to	
learn	to	just	use	regular	expressions	(yes,	I	am	aware	how	very	confusing	that	is.	Vim’s	
interpretation	of	magic	is	worse).	

If	you	desperately	need	a	regular	expression	to	do	something	you	can	ask	ChatGPT	skim	
through	:help regular expressions	to	Qind	the	syntax	you	need.	You	will	come	away	
either	enlightened	or	frustrated.	

Search In Project

If	you	need	to	search	for	a	word	across	your	entire	codebase,	instead	of	just	in	one	Qile,	use	
the	command	<Space>/	instead	of	just	/.	It	will	pop	up	the	ever-so-familiar	picker,	this	
time	in	“live_grep”	mode.	

Make	sure	you	have	ripgrep	installed	and	available	on	your	path	as	rg,	as	that	is	
what	the	pickers	use	under	the	hood.	

Type	the	string	you	are	looking	for.	The	results	will	show	up	in	the	left	side	and	the	Qile	will	
display	in	a	preview	on	the	right	so	you	can	be	sure	you	found	the	right	one:	

	

Remember	that	you	can	add	labels	to	Telescope	results	by	pressing	<Esc>s	to	enter	Seek	
mode,	or	to	fzf.lua	results	using	Control-x.	I	Qind	this	more	useful	in	the	live_grep	
window	because	unlike	most	pickers,	a	space	in	live_grep	is	sent	as	a	literal	space	to	
ripgrep,	instead	of	allowing	me	to	narrow	the	search	results	by	searching	for	something	
earlier	in	the	line.	

I	should	also	remind	you	that	since	this	is	a	picker,	you	can	press	ctrl-t	while	it	is	open	to	
put	all	the	search	results	into	the	Trouble	window	so	you	can	navigate	them	while	editing	
(using]q	and	[q).	

Annoyingly,	this	search	mode	is	completely	different	from	vim’s	built-in	search.	It	just	
passes	your	pattern	to	ripgrep	and	behaves	the	way	ripgrep	does.	And	ripgrep	doesn’t	
know	about	things	like	Vim’s	strange	regular	expression	engine.	It	does	support	regular	
expressions,	but	they	use	maddeningly	different	syntax	from	vim.	Which	is	to	say,	the	same	
syntax	as	pretty	much	everything	that	isn’t	vim.	It’s	vim	that’s	maddening	here,	not	
ripgrep.	Just	so	we’re	all	clear.	

Ripgrep	itself	accepts	a	multitude	of	command-line	options,	but	by	default,	the	live_grep	
feature	doesn’t	support	passing	arguments	to	ripgrep	to	tweak	your	query.	The	Telescope	
project	does	provide	a	telescope-live-grep-args	extension	that	you	can	enable	if	you	
want	to	be	a	live_grep	power	user	

To	the	best	of	my	knowledge,	fzf.lua	doesn’t	have	an	equivalent	to	Telescope’s	live-
grep-args.	

Setting	up	the	extension	pushes	LazyVim’s	(mostly)	reusable	plugin	conQiguration	system	to	
its	limit,	though.	So	let’s	conQigure	telescope-live-grep-args	as	much	for	a	tutorial	on	
how	to	handle	tricky	extension	conQigurations	as	because	you	might	actually	want	the	
feature.	There	are	a	lot	of	neat	Telescope	extensions	out	there,	and	you’ll	eventually	want	to	
know	how	to	set	others	up	that	LazyVim	doesn’t	ship	by	default.	

Se6ng up a Telescope extension

Start	by	visiting	the	telescope/telescope-live-grep-args.nvim.	You’ll	Qind	
installation	instructions	for	Lazy.nvim	(that’s	the	plugin	manager,	NOT	the	LazyVim	distro	
itself)	that,	at	time	of	writing	look	like	this:	

-- This is not helpful with LazyVim	
use {	
 "nvim-telescope/telescope.nvim",	
 dependencies = {	
 {	
 "nvim-telescope/telescope-live-grep-args.nvim" ,	
 },	
 },	
 config = function()	
 require("telescope").load_extension("live_grep_args")	

 end	
}	

The	reason	I	added	the	“not	helpful”	comment	there	is	the	call	to	config.	LazyVim	already	
conQigures	Telescope	with	a	fairly	complex	function	that	you	can	Qind	under	the	editor	
section	of	the	plugins	menu	on	the	LazyVim	website	(click	the	Full spec)	tab.	

For	the	most	part,	LazyVim	does	a	good	job	of	merging	its	own	defaults	with	any	
customizations	you	do	with	the	various	plugins	it	sets	up.	It’s	easy	to	change	or	remove	
keybindings	or	override	the	options	that	get	passed	into	a	setup	function,	for	example.	

But	it’s	not	easy	to	override	config.	

You	could	do	something	like	this:	

config = function(_, opts)	
 require("telescope").setup(opts)	
 require("telescope").load_extension("live_grep_args")	
	
end	

This	works	because	the	default	behaviour	of	config	in	lazy.nvim	is	to	call	
require(<the_plugin>).setup(opts).	So	we’re	basically	copying	the	contents	of	that	
function	into	our	custom	function.	But	if	LazyVim	happened	to	have	a	very	complicated	
config	for	Telescope,	you	would	have	to	copy	the	whole	thing	in,	and	it	would	eventually	
get	out	of	date	with	any	changes	that	LazyVim	makes	in	the	future,	and	that	wouldn’t	be	fun	
for	you	to	maintain.	More	importantly,	it	runs	a	very	real	risk	of	clobbering	any	Telescope-
related	changes	that	LazyVim	makes	with	other	plugins	or	extras.	

In	general,	I	try	very	hard	to	avoid	implementing	config	when	overriding	LazyVim’s	
defaults.	It’s	Qine	to	have	a	custom	implementation	of	config	if	I	am	adding	a	new	plugin	
that	LazyVim	isn’t	aware	of,	since	I’m	already	responsible	for	maintaining	it.	But	when	I’m	
customizing	plugins,	I	try	not	to	override	config.	

The	secret,	in	this	case,	is	to	use	the	“dependencies”	feature	of	lazy.nvim.	The	“Full	Spec”	
on	the	LazyVim	website	has	an	example	of	how	to	set	up	the	nvim-telescope/
telescope-fzf-native.nvim	extension,	which	looks	something	like	this	

 dependencies = {	
 {	
 "nvim-telescope/telescope-fzf-native.nvim",	
 -- snipped some build instructions	
 config = function()	

 LazyVim.on_load("telescope.nvim", function()	
 -- snipped loading the extension	
 end)	
 end,	
 },	
 },	

This	is	showing	us	how	to	have	a	mini-conQig	for	a	dependent	plugin,	which	is	exactly	what	
we	want.	Further,	if	we	customize	our	spec,	dependencies	is	one	of	the	tables	that	
Lazy.nvim	will	merge	with	the	parent	spec	(the	one	created	by	LazyVim).	So	we	don’t	need	
to	copy	the	above	code	into	our	telescope	extension	Qile;	we	only	need	to	create	a	net	new	
table.	

If	you	have	implemented	all	of	the	suggestions	in	this	book,	you	might	already	have	an	
extend-telescope.lua	Qile	that	has	some	custom	keybindings	for	deleting	buffers.	You	
can	either	edit	that	Qile	or	create	a	new	one;	LazyVim	will	merge	them	together	either	way.	
Personally,	I’ll	be	editing	that	Qile	to	add	the	following:	

return {	
 { "nvim-telescope/telescope-live-grep-args.nvim" },	
 {	
 "nvim-telescope/telescope.nvim",	
 dependencies = {	
 {	
 "nvim-telescope/telescope-live-grep-args.nvim",	
 config = function()	
 LazyVim.on_load("telescope.nvim", function()	
 require(
 "telescope"	
).load_extension("live_grep_args")	
 end)	
 end,	
 },	
 },	
 }	
}	

It’s	kind	of	verbose,	but	this	should	be	all	you	need	to	enable	the	plugin.	

Next,	you	need	to	set	up	a	keybinding	to	call	the	plugin.	You	can	choose	to	override	the	
existing	<Space>/	keybinding,	or	perhaps	you	would	use	<Space>?	if	you	want	to	have	
separate	“default	live_grep”	and	“live_grep_args”	mode.	

Your	Qirst	attempt,	if	you	are	following	the	live-grep-args	README	might	look	like	this:	

-- This won't work	
keys = {	
 {	
 "<leader>/",	
 require(
 "telescope"	
).extensions.live_grep_args.live_grep_args,	
 desc = "Grep with Args",	
 },	
},	

Unfortunately,	this	is	too	easy	for	LazyVim.	:-(Because	the	live_grep_args	plugin	has	
been	set	up	to	run	in	a	LazyVim.on_load,	it	is	not	deQined	at	the	time	the	keys	array	is	
created.	

The	solution	is	to	wrap	the	call	in	another	function,	so	the	import	only	happens	after	you	
press	the	keybinding.	That	works	because	the	onLoad	handler	will	have	been	called	by	that	
point:	

keys = {	
 -- Other telescope-related keybindings	
 {	
 "<leader>/",	
 function()	
 require(
 "telescope"	
).extensions.live_grep_args.live_grep_args()	
 end,	
 desc = "Grep with Args (root dir)",	
 },	
},	

Before	we	move	on	to	actually	using	the	live-grep-args	plugin,	there	is	one	more	place	you	
need	to	apply	this	weird	nested	function	calls	trick.	Telescope-live-grep-args	suggests	
hooking	up	ctrl-k	to	the	quote_prompt()	action,	like	so:	

-- Don't do this	
local lga_actions = require("telescope-live-grep-args.actions")	
telescope.setup {	
 extensions = {	

 live_grep_args = {	
 mappings = { -- extend mappings	
 i = {	
 ["<C-k>"] = lga_actions.quote_prompt(),	
 },	
 },	
 }	
 }	
}	

The	table	passed	into	setup	there	just	comes	from	our	opts	array,	but	we	again	need	to	
avoid	importing	telescope-live-grep-args	at	the	top-level	like	that.	Instead,	we	need	a	
new	function.	But	there	are	a	couple	gotchas:	

• quote_prompt()	is	a	function	that	returns	a	different	function.	So	we	need	to	
invoke	that	function	with	a	odd-looking	()()	syntax.	

• Telescope	mappings	accept	an	integer	argument	(the	internal	id	of	the	picker),	so	we	
need	to	forward	that	to	the	called	function.	

The	resulting	opts	array	looks	like	this:	

opts = {	
 extensions = {	
 live_grep_args = {	
 mappings = {	
 i = {	
 ["<C-k>"] = function(picker)	
 require(
 "telescope-live-grep-args.actions"	
).quote_prompt()(picker)	
 end,	
 },	
 },	
 },	
 },	
 }	

For	completeness	(and	because	all	the	above	snippets	on	their	own	may	not	make	
indentational	sense),	here	is	my	entire	Telescope	conQiguration,	including	the	mappings	
from	Chapter	9	that	set	up	<A-d>	in	the	buffer	picker:	

return {	
 { "nvim-telescope/telescope-live-grep-args.nvim" },	
 {	
 "nvim-telescope/telescope.nvim",	
 dependencies = {	
 {	
 "nvim-telescope/telescope-live-grep-args.nvim",	
 config = function()	
 LazyVim.on_load("telescope.nvim", function()	
 require(
 "telescope"	
).load_extension("live_grep_args")	
 end)	
 end,	
 },	
 },	
 keys = {	
 {	
 "<leader>/",	
 function()	
 require(
 "telescope"	
).extensions.live_grep_args.live_grep_args()	
 end,	
 desc = "Grep with Args (root dir)",	
 },	
 },	
 opts = {	
 pickers = {	
 buffers = {	
 mappings = {	
 i = {	
 ["<A-d>"] = function(...)	
 return require(
 "telescope.actions"	
).delete_buffer(...)	
 end,	
 },	
 n = {	
 ["<A-d>"] = function(...)	

 return require(
 "telescope.actions"	
).delete_buffer(...)	
 end,	
 },	
 },	
 },	
 },	
 extensions = {	
 live_grep_args = {	
 mappings = {	
 i = {	
 ["<C-k>"] = function(picker)	
 require(
 "telescope-live-grep-args.actions"	
).quote_prompt()(picker)	
 end,	
 },	
 },	
 },	
 },	
 },	
 }	
}	

It’s	a	mess,	I	know.	Part	of	the	mess	is	because	Telescope	is	pretty	generic,	and	that	mess	
would	still	exist	if	you	were	managing	your	own	conQig.	But	part	of	the	mess	is	because	we	
need	to	cooperate	with	LazyVim	when	we	enter	our	customizations,	and	the	conQig	is	
necessarily	more	complicated	than	it	would	be.	As	usual,	I’m	ok	with	this	because	I	have	to	
do	it	rarely	enough	and	I	appreciate	not	having	to	manage	most	of	my	conQiguration	by	
myself.	

Using Telescope live grep args

Ok	that	was	a	pretty	big	digression,	but	hopefully	you	understand	a	bit	better	how	to	
conQigure	plugins	in	those	cases	where	the	simple	abstractions	over	plugins	that	LazyVim	
provides	are	too	simple.	

Now	that	you	have	the	telescope-live-grep-args	conQigured,	let’s	discuss	a	few	tips	on	
how	to	use	it.	

You	can	place	any	-	or	--	preQixed	args	that	you	would	pass	to	ripgrep	(man rg	on	your	
command	line	will	tell	you	what	these	are)	at	the	beginning	of	your	search	string	to	forward	
those	arguments	to	ripgrep.	For	example,	to	run	the	command	rg --type typescript
--no-ignore foo	(which	searches	for	foo	only	in	typescript	Qiles	including	Qiles	that	
would	otherwise	be	hidden	by	things	like	.gitignore),	you	could	type	the	following	into	
the	Live	Grep	(Args)	Telescope	picker:	

	

For	me,	ninety	percent	of	the	time	when	I	want	to	customize	rg	args,	it’s	just	to	specify	a	Qile	
type,	so	--type	(or	-t	to	be	truly	lazy)	is	all	I	need.	

Often,	you’ll	start	typing	a	command	and	then	realize	the	search	is	too	broad	(or	too	
narrow)	and	you	should	have	included	some	ripgrep	arguments.	It’s	certainly	easy	enough	
to	type	<Esc>I	to	move	your	cursor	to	the	beginning	of	the	line	to	insert	them,	but	another	
option	is	to	press	Ctrl-k.	If	you’ve	set	up	the	plugin	as	described	in	the	previous	section,	
Ctrl-k	will	call	quote_prompt().	All	that	does	is	convert	whatever the prompt was	to	
"whatever the prompt was",	with	surrounding	quotes	and	a	space	after	it.	

This	is	convenient,	because	if	your	prompt	starts	with	a	search	string	in	quotes,	it	becomes	
the	pattern,	and	you	can	add	your	other	ripgrep	arguments	after	the	string:	

	

Summary

This	chapter	was	all	about	search:	the	/	shortcut	to	enter	search	mode,	and	the	<Space>/	
shortcut	to	enter	Qind	in	project	mode.	The	latter	is	not	as	powerful	as	it	could	be,	so	we	
also	set	up	the	telescope-live-grrep-args	plugin	to	give	us	a	little	more	control	over	
the	project-wide	search.	

Searching	is,	of	course,	only	half	the	story.	In	the	next	chapter,	we’ll	cover	replacing	text,	
both	as	part	of	a	search	operation	and	at	a	more	project-wide	level.	

Chapter 13: …and Replacing

Chapter	13:	…and	Replacing	-	LazyVim	for	Ambitious	Developers	

Vim	has	a	very	powerful	Qind	and	replace	mechanism.	It…	takes	some	getting	used	to.	On	
the	one	hand,	it’s	pretty	hard	to	go	back	after	you’ve	gotten	used	to	the	power	of	Vim	
substitution.	On	the	other	hand,	getting	used	to	it	can	take	a	lifetime.	Substitution	predates	
Vim	and	even	Vi;	it	goes	back	to	the	legendary	ed	by	Ken	Thompson	(who,	among	

numerous	other	things,	wrote	the	original	paper	on	regular	expressions.	It’s	an	interesting	
read).	

Substitution	in	ed	was	so	powerful	that	it	has	somehow	stuck	around	for	over	half	a	
century.	Not	only	is	it	the	primary	search	and	replace	mechanism	in	modern	Vim	and	
NeoVim,	it	is	also	popular	when	automating	tasks	via	shell	scripting,	using	sed	(the	stream	
editor,	a	sequel	to	ed).	

LazyVim,	as	usual,	enhances	the	substitution	command,	mostly	by	showing	you	live	
previews	of	your	changes	as	you	type.	

Because	it	is	an	ex	command	(ex	stands	for	“extended	ed”,	much	like	its	sibling	vi	was	
latter	rewritten	as	“vi	improved”),	you	access	substitution	by	entering	command	mode	
(with	a	:).	You	could	type	:substitute,	but	everybody	shortens	it	to	:s	because	a)	it	
works,	and	b)	why	type	more	than	you	need	to?	

Then,	without	pressing	enter,	type	a	/.	This	is	just	a	separator	to	separate	the	command	you	
are	issuing	(s	or	substitute)	from	the	term	you	are	searching	for.	

Then	type	the	search	pattern.	This	can	be	any	vim	regular	expression,	just	like	we	described	
brieQly	for	a	normal	search	earlier.	

Here	you	can	see	that	I	have	typed	:s/pattern	into	my	editor,	and	the	pattern	is	
highlighted	on	the	line	that	my	cursor	was	on:	

	

Next,	type	another	/	to	separate	the	pattern	from	the	replacement,	and	then	type	whatever	
string	you	want	to	replace	it	with.	LazyVim	will	live	update	all	instances	of	the	search	term	
with	the	replacement	term	so	you	can	preview	what	it	will	look	like.	Here,	I’m	going	to	
replace	pattern	with	FOOBAR:	

	

Now	press	Enter	to	complete	the	command	and	conQirm	the	replacement.	So	Qind	and	
replace	is	as	simple	as	:s/pattern/replacement<Enter>.	That’s	not	so	bad,	is	it?	

Maybe	it’s	not,	but	we’re	not	done.	Not	remotely.	For	one	thing,	that	command	will	only	
replace	the	Qirst	instance	of	pattern,	and	only	if	the	pattern	happens	to	be	on	the	same	line	
as	the	cursor.	

Subs/tute ranges

Many	NeoVim	ex	commands	can	be	preceded	by	a	range	of	lines	that	the	command	will	
operate	on.	The	syntax	for	ranges	can	be	a	little	confusing,	and	to	this	day	I	still	have	to	look	
it	up	with	:help range	if	I’m	doing	anything	non-standard.	

The	simplest	possible	range	is	the	.,	which	stands	for	“current	line”.	It	would	look	like	:.s/
patttern/replacement.	The	.	between	the	:	and	the	s	is	the	range,	in	this	case.	You	
normally	wouldn’t	bother,	though	because	.	or	current	line	is	the	default	range.	

Probably	the	second	most	common	range	you	will	use	is	%.	It	stands	for	“Entire	File”.	If	you	
are	used	to	the	Qind	and	replace	dialog	in	most	editors	or	word	processors,	you	probably	
expected	it	to	mean	“entire	Qile.”	But	it’s	not,	and	if	you	want	to	do	a	Qind	and	replace	across	
the	entire	Qile,	you	would	need	to	use	:%s/pattern/replacement	(probably	with	a	/g	on	
the	end	as	described	in	the	next	section).	

You	could	also	set	a	speciQic	line	number,	such	as	:5s/pattern/replacement	to	replace	
the	word	pattern	on	line	5.	But	personally,	I	would	use	5G	to	move	my	cursor	to	line	Qive	
and	then	do	a	default	range	substitution	instead.	

The	name	“range”	implies	that	you	would	normally	cover	a	sequence	of	multiple	lines,	and	
you	can	indeed	separate	a	start	and	end	position	using	a	comma.	So,	for	example,	
:3,8s/...	will	perform	the	substitution	on	lines	3,	4,	5,	6,	7,	and	8	(the	selection	is	
inclusive	at	both	ends):	Here	I’ve	started	a	pattern	that	is	highlighting	the	word	hello	on	
lines	3	through	8,	but	no	other	lines:	

	

You	can	also	use	marks	such	as	'a	as	described	in	the	previous	chapter	to	deQine	the	start	
or	end	of	a	range.	

The	most	common	way	you’ll	use	this	is	using	'<,'>,	which	speciQies	the	range	for	“the	
most	recent	visual	selection.	Luckily,	you	won’t	need	to	type	those	characters	all	that	often,	
because	if	you	select	some	text	using	e.g.	Shift-V	followed	by	a	cursor	movement,	and	
then	type	:,	Neovim	will	automatically	take	care	of	copying	that	range	into	the	command	
line.	

This	means	that	if	you	want	to	“perform	a	substitution	in	the	current	visually	selected	text,”	
you	just	have	to	select	the	text	and	type	:s/....	The	range	will	be	inserted	between	the	
colon	and	s,	so	you’ll	get	:'<,'>s/....	

If	your	brain	is	up	for	some	recursive	confusion,	you	can	even	use	a	search	pattern	to	
specify	one	end	of	the	range!	In	the	following	example,	my	cursor	was	on	line	5	when	I	
started	the	substitution:	

	

The	substitution	is	:,/hello-10/s/hello/foo.	All	those	forward	slashes	in	there	make	it	
pretty	hard	to	read	(looks	like	a	Unix	Qile	path!),	but	it’s	actually	easy	to	write.	Let’s	break	it	
down	from	left	to	right:	

• :	is	the	normal	mode	“start	a	command”	trigger.	
• There	is	nothing	between	the	:	and	the	,	so	the	start	of	the	range	is	the	current	line	

(line	5	in	this	example).	
• The	Qirst	/	is	a	ever-so-slightly	more	succinct	way	of	saying	“the	end	of	the	range	is	

the	Qirst	line	after	the	current	cursor	position	that	matches	some	pattern”.	
• hello-10	is	the	pattern	we	are	searching	for	to	deQine	the	end	of	the	range.	
• The	second	/	marks	the	end	of	the	pattern.	So	our	full	range	is	,/hello-10/	and	

means	“from	the	current	line	to	the	line	containing	hello-10.”	
• The	s	indicates	we	want	to	perform	a	substitution	on	the	lines	in	that	range.	
• /hello/foo	is	the	pattern	“hello”	and	replacement	“foo”,	like	any	substitution.	

There	is	a	ton	of	other	stuff	you	can	do	with	Vim	ranges,	but	the	truth	is,	most	of	them	only	
exist	to	support	outdated	editing	modes.	You	will	likely	Qind	that	%,	'<,'>,	and	,/pattern/	
cover	95%	of	your	use	cases.	Read	through	:help range	once	to	make	sure	you	know	
what	other	sorts	of	syntaxes	are	available,	and	don’t	be	afraid	to	look	them	up	in	the	rare	
instances	that	one	of	the	above	is	not	sufQicient.	

Flags (Global and ignore case subs/tu/ons)

Did	you	think	we	were	done	with	substitutions?	Sorry!	I’m	trying	to	condense	this	section	
to	include	only	that	which	is	actually	useful	in	2024,	but	substitutions	are	just	so	darn	
powerful	that	it’s	getting	away	from	me.	

You	can	add	“Qlags”	at	the	end	of	any	substitution	(after	the	last	/)	to	modify	how	the	search	
and	replace	behaves.	The	most	common	Qlag	you’ll	use	is	g	which	stands	for	“global”.	You’ll	
append	it	more	often	than	not.	

By	default,	substitute	only	replaces	the	Qirst	instance	of	a	pattern	on	the	line.	So	if	I	have	
a	Qile	full	of	the	overly	cheerful	words	hello hello,	then	the	substitution	:%s/hello/foo	
will	only	replace	the	Qirst	instance	on	each	line:	

	

But	if	I	append	/g	it	will	replace	all	the	hello’s	on	each	line:	

	

I	mentioned	earlier	that	the	supremely	common	use	case	of	“replace	everything	in	the	Qile”	
is	:%s/pattern/replacement/g.	The	%	is	“every	line”,	and	the	g	means	“every	instance	in	
each	line”.	

There	are	almost	a	dozen	Qlags,	but	the	only	other	useful	ones	are	i,	I,	and	(rarely)	c.	The	
Qirst	two	explicitly	ignore	case	or	disable	ignoring	case	in	the	term	being	searched	for,	and	
you’ll	only	ever	need	one	or	the	other	depending	on	whether	you	have	ignorecase	set	in	
your	options.lua	(it	defaults	to	true	in	LazyVim).	The	c	Qlag	means	conQirm	and	is	useful	
if	you	want	to	make	substitutions	in	a	large	Qile	but	you	know	you	want	to	skip	some	of	
them;	you	will	be	shown	each	proposed	change	and	accept	or	reject	them	one	at	a	time.	

Flags	can	be	combined,	so	:%s/hello/foo/gc	will	do	a	global	replace,	conQirming	each	
one.	

Handy Subs/tute shortcuts

You	don’t	need	to	memorize	this	section,	but	once	you	get	used	to	substituting,	you’ll	
probably	notice	that	some	actions	are	rather	repetitive	and	monotonous	and	you’d	like	
them	to	go	faster.	Read	through	these	tips	so	you	remember	to	look	them	up	when	you	are	
more	comfortable	with	:substitute.	

If	you	leave	the	pattern	part	of	a	substitution	blank,	(as	in	:s//replacement/),	it	will	
default	to	whatever	pattern	you	last	searched	for	or	substituted.	For	example,	if	you	
perform	these	commands	in	order:	

• /foo	will	search	for	the	word	foo	
• :s//bar	will	replace	foo	with	bar	
• :s/baz/bar	will	replace	baz	with	bar	
• :s//fizz	will	now	replace	baz	with	fizz	

This	can	save	a	little	typing	when	you	search	for	a	term	and	then	decide	you	want	to	replace	
it,	or	when	you	have	substituted	something	in	one	Qile	and	want	to	substitute	it	again	in	
another.	

If	you	just	use	:s	without	any	pattern	or	replacement,	it	will	repeat	the	last	pattern	and	
replacement	you	did.	But	be	aware	that	it	will	not	act	on	the	same	range,	so	if	you	want	to	
repeat	it	exactly	you’ll	need	to	type	the	range	again.	

It	also	won’t	repeat	Qlags,	but	you	can	(usually)	append	the	Qlags	directly	to	:s.	For	
beginners,	the	most	common	of	these	is	:%sg,	which	maps	to	“repeat	the	last	substitution	
on	the	entire	Qile,	globally.”	This	is	helpful	when	you	typed	:s/some-long-pattern/some-
longe-replacement	and	expected	it	to	do	a	global	replace,	but	actually	it	just	replaces	the	
Qirst	instance	on	the	current	line.	:%sg	will	repeat	the	substitution	the	way	you	intended	it.	
You	might	also	reach	for	'<,'>sg	to	replace	in	the	last	visual	selection.	

Don’t	forget	that	you	can	repeat	the	last	visual	selection	with	gv	to	conQirm	that	it	
is	actually	selecting	what	you	thought	it	does.	

If	you	want	to	reuse	whatever	was	matched	in	the	pattern	in	the	replacement,	you	can	use	
\0	in	the	replacement	string.	This	is	particularly	useful	when	you	are	using	a	regular	
expression	that	could	potentially	match	different	things.	

For	example,	imagine	I	have	the	following	Qile:	

hello world	
Hello thrift shop	
Hellish world	

For	some	reason,	I	want	to	add	an	adjective	between	the	Qirst	and	second	words.	This	can	
be	accomplished	with	the	command	:%s/[hH]ell\S* /\0green /:	

	

That	command	might	be	a	little	intimidating	if	you	aren’t	comfortable	with	regular	
expressions,	so	I’ll	break	it	down	again;	

• :%	means	“perform	a	command	on	the	entire	Qile”	
• s/	means	“the	command	to	perform	is	substitute”	
• [hH]	means	“match	h	case	insensitively	(see	note)	
• ell	means	“match	the	three	characters	ell	exactly”	
• \S	means	“match	any	non-whitespace	character”	

• *	means	“repeat	the	\S	match	zero	or	more	times”,	which	takes	us	to	the	end	of	the	
word.	

• /	includes	a	space	and	then	the	end	of	the	search	pattern	
• \0	says	“insert	whatever	was	matched	by	the	above	pattern	into	the	replacement”	
• green	says	“insert	that	text	directly	into	the	replacement”	
Note	on	[hH]:	this	isn’t	necessary	if	you	don’t	have	vim.opt.ignorecase=false	
in	your	options.lua.	An	alternative	would	be	to	use	/i	at	the	end	of	the	pattern	
to	force	ignoring	case	for	this	one	search.	Then	[hH]	could	just	be	h.	

You	can	even	reuse	part	of	the	pattern	in	the	replacement.	To	do	this,	place	the	part	you	
want	to	reuse	in	\(and	\).	Then	use	\1	to	represent	whatever	was	matched	between	
brackets	in	the	replacement	portion.	

This	is	easier	to	understand	with	an	example.	If	we	start	with	the	same	three	line	example	
as	above,	we	can	use	the	substitution	:%s/hell\(\S*\)/green\1 and blue\1/i	to	
cause	the	following	nonsense	substitution:	

	

The	\(\S*\)	matches	the	same	thing	as	\S*	but	it	stores	the	result	in	a	capture.	Then	
when	we	want	to	reuse	the	capture	in	the	replacement,	we	use	\1	to	refer	back	to	whatever	
was	captured	on	that	match.	

You	might	guess	from	the	fact	that	we’re	using	numbers	here	that	you	can	have	and	refer	
back	to	multiple	captures,	and	your	guess	would	be	correct!	

Project-wide search and replace with Spectre

LazyVim	ships	with	a	plugin	called	Spectre	to	do	a	global	Qind	and	replace.	In	the	old	days,	
you	would	probably	do	this	from	the	command	line	using	sed,	the	stream-oriented	
evolution	of	ed	that	I	mentioned.	And	if	you’re	anything	like	me,	you	wouldn’t	enjoy	it.	

Spectre	does	a	global	Qind	and	replace	in	all	Qiles	in	the	current	project.	Before	we	see	how	
to	use	it,	I	should	warn	you	(as	the	Specte	README	does)	to	commit	your	Qiles	to	version	
control	before	running	Spectre	because	the	work	it	does	is	irreversible.	You	can’t	undo	it,	so	
make	sure	git reset --hard	won’t	cause	you	to	lose	any	work	that	wasn’t	done	by	
Spectre.	

Spectre	is	really	just	a	lightweight	UI	wrapping	sed	and	ripgrep,	two	command	line	tools	
we’ve	mentioned	before.	But	that	UI	is	pretty	handy,	as	both	tools	have	some	arcane	
arguments	(though	sed	is	similar	to	the	:s	behaviour	we	just	learned).	

Note:	MacOS	ships	with	a	less-robust	version	of	sed	and	you	should	probably	run	
brew install gnu-sed	for	Spectre	to	work	properly.	

To	show	the	Spectre	UI,	use	the	keyborad	shortcut	<Space>sr,	where	the	mnemonic	is	r	
for	replace.	The	window	that	pops	up	is	pretty	bare-bones:	

	

You	can	navigate	around	this	window	using	all	the	normal	vim	motions,	but	you’ll	mostly	
just	want	to	use	Tab	(in	normal	mode)	to	jump	between	the	three	Qields.	

The	search	Qield	can	accept	any	(vim-style)	regular	expression,	and	the	replace	Qield	can	
support	\0	and	friends	so	it	should	start	to	feel	familiar	(at	least,	insofar	as	:s	can	feel	
familiar!)	

The	path	Qield	is	used	to	isolate	your	search	to	a	speciQic	subfolder	of	the	current	directory	
(e.g.	src/	might	be	a	useful	path).	However	Spectre	will	perform	its	job	faster	if	you	:cd	or	
use	NeoTree	or	mini.files	to	change	to	the	subdirectory	directly	before	running	spectre.	

After	you	have	inserted	the	search	and	replace	text,	you	will	need	to	press…	(this	is	
unintuitive,	unless	you	are	used	to	vim)	Escape	to	return	to	normal	mode.	This	will	pop	up	
a	pretty	nifty	preview	area	that	shows	all	the	changes	it	will	make:	

	

Navigate	the	preview	window	using	whatever	motions	feel	appropriate.	If	one	of	the	results	
is	something	you	don’t	actually	want	to	replace	(e.g.	a	package	lockQile),	use	the	dd	
command	to	remove	it	from	the	replace	action.	

When	you	are	ready	to	perform	the	underlying	command,	use	<Space>R	to	perform	the	
replacement	action.	You	can	also	use	<Space>rc	to	replace	just	one	of	them.	Even	though	
these	look	like	space	mode	commands,	they	are	only	available	when	the	Spectre	window	is	
active.	

There	are	a	few	other	useful	keybindings	in	a	menu	you	can	pop	up	with	?,	which	I’ll	leave	
you	to	peruse	at	your	leisure.	

Perform vim commands on mul/ple lines

The	:substitute	isn’t	the	only	one	that	can	operate	on	multiple	lines	at	once,	with	a	
range.	In	fact,	if	you	just	want	to	write	a	few	lines	out	to	a	separate	Qile,	you	can	pass	a	range	
to	:write.	The	easiest	way	to	do	this	is	to	select	the	range	in	visual	mode	and	type	:write.	
Neovim	will	automatically	convert	it	to	:'<,'>write	and	only	save	only	those	lines.	

A note on mul/ple cursors

NeoVim	doesn’t	have	Qirst	class	multi-cursor	support	(yet).	Historically,	Vim	coders	have	
considered	multi-cursor	mode	to	be	a	crutch	required	by	less	powerful	editors	that	don’t	
have	Vim’s	command	modes.	More	recently,	experimental	editors	such	as	Kakoune	and	
Helix	have	demonstrated	that	multiple	cursors	can	integrate	very	well	with	modal	editing.	
Modern	developers	like	multiple	selections,	and	NeoVim	is	expected	to	ship	with	native	
multiple	cursor	support	in	the	future	(It’s	currently	listed	as	0.12+	on	the	roadmap).	

In	the	meantime,	there	are	multiple	cursor	plugins,	but	I	Qind	them	to	be	clumsy	and	fragile,	
and	recommend	avoiding	them	at	this	time.	Instead,	you	can	use	the	commands	discussed	
below	or	rely	on	other	Vim	tools	such	as	repeating	recordings	(with	q	Q,	and	@@),	or	visual	
block	mode	(Ctrl-v)	with	an	insert	or	append	that	modiQies	multiple	lines.	

The :norm command

When	you	Qirst	use	it,	:norm	feels	pretty	weird.	It	allows	you	to	perform	a	sequence	of	
arbitrary	vim	normal-mode	commands	(including	navigation	commands	such	as	hjkl	and	
web	as	well	as	modiQication	commands	like	d,	c,	and	y)	across	multiple	lines.	

You	can	even	enter	insert	mode	from	:norm!	But	you	need	to	know	a	small	secret	to	get	out	
of	insert	mode	because	pressing	<Escape>	while	the	command	menu	is	visible	will	just	
close	the	command	menu.	Instead,	use	ctrl-v<Escape>.	When	you	are	in	insert	mode	or	
the	command	line,	the	ctrl-v	keybinding	says	“insert	the	next	keypress	literally	instead	of	
interpreting	it	as	a	command.”	The	terminal	usually	renders	ctrl-v<Escape>	as	^[.	

For	example	imagine	we	are	editing	the	following	Qile:	

foo	
Bar	
fizz buzz	
one two three	

For	inexplicable	(but	pedagogical)	reasons,	we	want	to	perform	the	following	on	each	and	
every	line:	

• insert	the	word	“HELLO”	at	the	beginning	of	the	line	with	a	space	after	it	
• capitalize	the	Qirst	letter	of	the	Qirst	word	on	the	line	
• insert	the	word	“BEAUTIFUL”	after	the	Qirst	word	on	each	line	with	spaces	

surrounding	it	
• append	the	word	“WORLD”	to	the	end	of	each	line	with	a	space	before	it	

Start	by	typing	:%norm	to	open	a	command	line	with	a	range	that	operates	on	every	line	in	
the	Qile	(%)	and	the	norm	command	followed	by	a	space.	

Then	add	IHELLO	to	insert	the	text	HELLO	at	the	beginning	of	each	line	in	the	range.	Now	
hit	ctrl-v	and	then	Escape	to	insert	the	escape	character	into	the	command	line.	This	will	
return	the	command	to	normal	mode	when	it	runs.	

Now	type	lgUl	to	move	the	cursor	right	(which	puts	it	on	the	beginning	of	the	Qirst	word),	
then	uppercase	one	character	to	the	right	(i.e.	the	Qirst	character	of	the	next	word).	

Next	is	e	to	jump	to	the	end	of	the	word,	followed	by	a BEAUTIFUL	to	append	some	text	
after	that	word.	ctrl-v	and	Escape	will	insert	another	escape	character.	

Finally,	add	A WORLD	to	enter	append	mode	at	the	end	of	the	line	and	add	the	text	WORLD.	

The	entire	command	would	therefore	be:	

:%norm IHELLO <ctrl-v Escape>lgUlea BEAUTIFUL<ctrl-v Escape> A WORLD	

Visually,	it	looks	like	this,	since	the	ctrl-v Escape	keypresses	get	changed	to	^[:	

	

And	the	end	result:	

HELLO Foo BEAUTIFUL	
HELLO Bar BEAUTIFUL WORLD WORLD	
HELLO Fizz BEAUTIFUL buzz WORLD	
HELLO One BEAUTIFUL two three WORLD	

Admittedly,	it’s	unclear	why	you’d	want	to	perform	this	exact	set	of	actions,	but	it	hopefully	
shows	that	anything	is	possible!	

It’s	pretty	common	to	get	the	command	wrong	the	Qirst	time	you	try	to	apply	it.	Simply	use	
u	to	undo	the	entire	sequence	in	one	go,	then	type	:<Up>	to	edit	the	command	line	again.	

If	the	command	is	kind	of	complicated,	you’ll	probably	get	annoyed	while	editing	it	because	
you	don’t	have	access	to	all	the	vim	navigation	commands	you	are	used	to.	So	now	is	a	great	
time	to	introduce	Vim’s	command	line	editor.	

Command Line Editor

To	display	the	command	line	editor,	type	Control-F	while	the	little	Cmdline	window	is	
focused.	Or,	if	you	are	currently	in	normal	mode,	type	q:.	This	latter	is	not	related	to	the	
“record	to	register”	command	typically	associated	with	q.	It	is	instead	“Open	the	editable	
command	line	window”.	

This	window	is	basically	what	happens	when	the	normal	command	line	editor	marries	a	
normal	vim	window	and	spawns	a	magical	superpower	command	line	window.	

The	new	magic	window	shows	up	at	the	bottom	of	the	current	buffer,	just	above	the	status	
bar,	and	it	contains	your	entire	command	line	history	(including	searches	and	
substitutions):	

	

Use	ctrl-u	to	scroll	up	this	baby	and	you’ll	see	every	command	you	ever	typed.	You	can	
even	search	it	with	?	(search	backward	is	probably	more	useful	than	search	forward	since	
your	commands	are	ordered	by	recency).	

To	run	any	of	those	old	commands,	just	navigate	your	cursor	to	that	line	and	press	Enter.	
Boom!	History	repeats	itself.	

Or	you	can	enter	a	brand	new	command	on	the	blank	line	at	the	bottom	of	this	magic	
command	window	(Remember	Shift-G	will	get	you	to	the	bottom	in	a	hurry).	

You	will	Qind	this	window	is	devilishly	hard	to	escape,	though.	The	escape	key	doesn’t	work,	
because	it’s	reserved	for	escaping	to	normal	mode	while	editing	the	window.	The	secret	is	
to	use	Control-C	close	it,	although	other	window	close	commands	such	as	Control-w q	
(or	\q	if	you	have	set	up	your	keybindings	as	I	suggested	in	Chapter	9)	will	also	work.	You	
can	even	run	:q	from	inside	the	command	line	window.	

Most	importantly,	you	can	use	normal	vim	commands	to	edit	any	line	in	this	window.	Just	
navigate	to	the	line,	use	whatever	mad	editing	skills	you	have	(including	other	command-

mode	commands	such	as	:s)	to	make	the	line	look	the	way	you	want	it	to,	return	to	normal	
mode,	and	press	Enter.	The	edited	command	will	execute.	

I	have	to	confess,	I	had	been	using	Vim	for	over	a	decade	before	I	discovered	what	this	
window	was	for	(though	I’d	gotten	myself	into	it	by	accident	and	had	trouble	getting	out	
more	than	a	few	times…).	And	it	instantly	became	my	favourite	window.	q:	(or	:Control-
f).	It’s	magical!	

Mixing :norm with recording

Recall	that	the	q	command	can	record	a	sequence	of	commands	to	a	register	for	later	
playback.	There	are	several	ways	you	can	later	apply	this	recording	to	a	range	of	lines.	

• :<range>norm @q	will	simply	execute	the	q	register	on	the	entire	range,	since	@q	is	
the	command	to	execute	register	q.	

• :<range>norm <ctrl-r>q	will	copy	the	contents	of	register	q	into	the	cmdline	
window.	

• q:<range>inorm <Esc>"qp	will	open	the	command	line	editor	window,	insert	the	
word	norm	and	copy	the	contents	of	register	q	into	the	line	using	the	normal	mode	
register	paste	command.	

The global command

The	:norm	command	operates	on	a	range	of	lines,	and	NeoVim	ranges	must	be	contiguous	
lines.	It’s	not	possible	to	execute	a	command	on	e.g.	lines	1	to	4	and	8	to	10,	but	not	5	to	7	
(other	than	running	:norm	twice	on	different	ranges).	

Sometimes,	you	want	to	run	a	command	on	every	line	that	matches	a	pattern.	This	is	where	
the	:global	command	comes	in.	

The	syntax	for	:global	is	essentially	:<range>global/pattern/command,	although	you	
can	shorten	it	to	:<range>g/pattern/command.	The	pattern	is	just	like	any	vim	search	or	
substitute	pattern.	

The	command,	however,	is	kind	of	weird.	Technically,	it’s	an	“ex”	command,	which	means	
“many	but	not	all	of	the	commands	that	come	after	a	colon,	but	mostly	ones	you	don’t	use	in	
daily	editing	so	they	are	hard	to	remember”.	

The	most	common	example	is	“delete	all	lines	that	match	a	pattern”,	which	you	can	do	
with	:%g/pattern/d.	

Another	popular	one	is	substitute,	which	you	already	know.	If	you	precede	your	
substitute	with	:%g/pattern,	you	can	make	it	only	perform	the	substitution	on	lines	that	

match	a	certain	pattern.	This	pattern	can	be	different	from	the	one	that	is	used	in	the	
substitution	itself.	Consider	the	following	arcane	sequence	of	text:	

:%g/^f/s/ba[rt]/glib	

What	a	mess!	This	is	obviously	meant	to	be	easy	to	write,	not	easy	to	read.	If	we	wanted	it	
to	be	slightly	easier	to	read,	we’d	probably	write	:%global/^f/substitue/ba[rt]/
glib.	

This	command	means	“perform	a	global	operation	on	every	line	that	starts	with	f.	The	
operation	in	this	case	should	be	to	replace	every	instance	of	bar	or	bat	with	the	word	
glib.”	

In	my	opinion,	though,	the	most	interesting	use	of	:global	is	to	run	a	normal	mode	
command	on	the	lines	that	match	a	pattern.	This	effectively	means	mixing	:global	
with	:normal,	as	in	:%g/pattern/norm <some keystrokes>.	

As	just	one	example,	this	will	insert	the	word	“world”	at	the	end	of	every	line	that	starts	
with	“hello”:	

	

You	can	also	use	global	to	perform	a	command	on	every	line	that	does	not	match	a	pattern.	
Just	use	g!/	instead	of	g/	This	is	useful,	for	example,	in	log	Qiles	that	have	exceptions	
wrapping	onto	random	lines.	For	example,	a	rudimentary	log	Qile	might	look	like	this:	

2024-03-26T12:00:00 Something happened	
2024-03-26T12:01:01 Something happened	
2024-03-26T12:01:02 Something super bad happened	
 Traceback:	
 A bunch of lines I don't care about	
2024-03-26T12:02:00 Something else happened	
2024-03-26T12:03:58 Cool thing happened	

and	prior	to	further	processing,	I	might	want	to	remove	every	line	that	doesn’t	start	with	a	
date:	

	

That	might	be	a	bit	eye-watering.	Each	\d	means	“match	a	digit”,	while	the	Qinal	/d	means	
“perform	a	delete	operation	on	the	selected	lines”.	The	g!	is	the	important	part;	that’s	the	
one	that	means	“the	selected	lines	are	ones	that	don’t	match	the	pattern”.	

I	don’t	use	:global	nearly	as	often	as	I	use	:norm.	But	when	I	do,	it	is	a	hyper-efQicient	way	
to	cause	massive	changes	in	a	Qile.	It	takes	some	getting	used	to,	and	you’ll	probably	be	
looking	up	the	syntax	the	Qirst	few	times	you	need	it,	but	it’s	a	really	terriQic	tool	to	have	in	
your	toolbox.	

Summary

This	chapter	was	all	about	bulk	editing	text.	We	started	with	substitutions	using	
the	:s[ubstitute]	ex	command,	and	then	took	a	tour	of	the	UI	for	performing	Qind	and	
replace	across	multiple	Qiles	using	the	Spectre	plugin.	

Then	we	learned	how	to	perform	commands	on	multiple	lines	at	once	using	:norm	
and	:global,	and	earned	a	quick	but	comprehensive	introduction	to	the	command	line	
editing	window.	

In	the	next	chapter,	we’ll	learn	several	random	editing	tips	that	I	couldn’t	Qit	anywhere	else.	

Chapter 14: Miscellaneous Edi/ng Tips

Chapter	14:	Miscellaneous	Editing	Tips	-	LazyVim	for	Ambitious	Developers	

Before	we	dive	into	some	of	the	more	“IDE-like”	behaviours	that	LazyVim	enables,	I	wanted	
to	collect	some	tips	that	can	make	your	editing	life	a	little	more	fun.	This	chapter	is	a	bit	of	a	
grab	bag,	and	includes	some	commands	and	plugins	that	didn’t	Qit	anywhere	else.	

Word counts

Use	g<Control-g>	to	spit	out	a	message	containing	some	helpful	info	about	the	current	
cursor	position:	

	

Most	notably,	the	“Word	110	of	3179”	tells	me	that	this	chapter	has	over	3000	words	in	it	(I	
mean,	obviously	I	updated	this	section	after	I	wrote	more	words!)	

Transposed characters

How	often	do	you	type	so	fast	that	you	accidentally	transpose	two	chracters?	

Simply	use	xp	to	swap	a	character	with	the	one	to	the	right	of	it.	For	example,	if	you	have	
typed	ra	when	you	meant	to	type	ar,	put	your	cursor	on	the	r	and	hit	xp.	

This	is	not	a	special	custom	command.	It	just	leverages	the	default	“delete	character”	and	
“put	last	deleted	after	the	cursor”	commands	to	move	the	character	from	its	current	
position	to	the	next	one.	You	can	use	a	similar	idea	to	move	other	text	around.	For	example,	
move	a	word	with	dwwP	or	use	daaWp	to	delete	an	argument	and	move	it	later	in	a	list	of	
arguments.	

Commen/ng and uncommen/ng code

I	used	Vim’s	somewhat	clumsy	blockwise	column	mode	to	add	or	remove	#	or	//	characters	
at	the	beginning	of	each	line	for	way	too	long	before	I	learned	there	were	plugins	for	
commenting	code.	As	of	Neovim	0.10,	this	is	actually	shipped	natively	with	Neovim,	but	
LazyVim	still	includes	a	plugin	if	you	are	on	an	older	Neovim	version.	

The	verb	for	toggling	comments	is	gc	and	can	be	followed	by	a	motion	or	text	object.	So	
gc5j	will	comment	this	line	and	the	Qive	lines	below	it,	while	gcap	will	comment	out	an	
entire	block	separated	by	newlines.	

This	command	pairs	beautifully	with	the	S	command	to	comment	out	a	surrounding	text	
object.	For	example	gcSh	will	comment	out	the	function	surrounded	by	the	h	labels	after	
the	S	is	invoked.	

To	comment	out	a	single	line,	use	the	easy-to-type	shortcut	gcc.	This	command	can	take	a	
count,	so	5gcc	will	comment	out	Qive	lines	(a	little	easier	to	type	than	gc4j).	

As	with	most	verbs,	gc	can	also	be	applied	to	a	visual	selection	with	e.g.	V5jgc.	

The	gc	verb	is	actually	a	toggle,	so	if	a	line	is	currently	commented,	it	will	uncomment	it	
instead	of	commenting	it	a	second	time.	Thus,	gccgcc	is	a	no-op.	However,	note	that	if	you	
have	a	selection	that	contains	commented	and	uncommented	lines,	you	will	end	up	with	a	
double	comment.	This	is	usually	what	you	want:	If	you	temporarily	comment	out	a	block	
that	contains	other	comments,	when	you	uncomment	that	block,	you	probably	want	the	
comments	to	stay	commented.	

Incremen/ng and decremen/ng numbers

If	your	cursor	is	currently	on	a	number	in	normal	mode,	you	can	use	ctrl-a	to	increment	
that	number.	This	command	is	somewhat	smart	and	does	the	“right	thing”	if	your	number	
needs	new	digits.	So	9	becomes	10	and	99	becomes	100	when	you	press	ctrl-a	anywhere	
in	the	number.	

To	decrement	a	number,	use	ctrl-x.	I	hated	these	two	keybindings	for	the	longest	time	
because	they	are	only	occasionally	useful,	but	when	they	are	useful,	I	couldn’t	remember	
them.	So	I	spent	a	long	time	manually	incrementing	numbers	and	thinking	to	myself	“I	need	
to	look	up	those	number	increment	numbers,”	but	the	only	keywords	associated	with	this	
help	section	were	the	keybindings	themselves!	

Eventually	I	learned	about	the	:helpgrep	command,	which	allows	you	to	search	the	help.	
Long	before	I	memorized	the	keybindings,	I	remembered	that	:helpgrep Adding and
subtracting	would	help	me	look	them	up.	

But	there	is	actually	a	mnemonic	for	these	keybindings:	ctrl-a	is	“Add”,	which	is	easy	
enough	to	remember.	ctrl-x	is	a	little	harder,	but	now	that	you	have	ctrl-a	you’ll	be	able	
to	look	it	up	with	:help	ctrl-a	;-).	I’m	not	sure	if	it	will	help	anyone	else,	but	I’ve	learned	to	
think	of	the	x	as	“‘cross’	out	one	digit	to	subtract”.	

Use	g<ctrl-a>	and	g<ctrl-x>	to	decrement	numbers	on	consecutive	lines	with	an	
additional	count	for	each	line.	This	is	useful	if	you	are	manipulating	numbered	lists.	Say	you	
want	to	make	a	list	of	10	items.	First	type	oi1.<esc>	to	make	a	line	that	says	1..	Then	type	
9.	to	repeat	that	command	9	times.	Now	you	have:	

1.	
1.	
1.	
1.	

1.	
1.	
1.	
1.	
1.	
1.	

You	can	use	V'[to	select	the	9	rows	that	just	got	inserted,	as	the	'[mark	is	the	Qirst	
character	of	the	previously	changed	text.	Now	type	g<ctrl-a>	to	increment	them	and	you	
end	up	with:	

1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	

Not	bad	for	just	a	handful	of	admittedly	bizarre	keystrokes:	oi1.<Esc>9.V'[g<ctrl-a>!	

If	you	need	to	insert	a	new	entry	in	the	middle	of	a	list,	add	the	entry,	select	the	lines	with	
the	remaining	entries,	and	hit	ctrl-a	to	sync	them	up.	

Neovim	will	smartly	just	increment	the	Qirst	number	it	encounters	on	a	line.	This	means	it	is	
easy	to	for	example,	manipulate	a	book’s	outline	even	if	it	contains	multiple	numbers.	
Consider	this	hypothetical	outline	of	a	book	not	unlike	this	one:	

Chapter 1: Intro and Install	
Chapter 2: 1 Weird modal editing trick	
Chapter 3: The numbered marks 1-9	
Chapter 4: Navigating things	
...	

Let’s	say	I	want	to	split	Chapter	1	into	two	different	chapters:	“Intro”	and	“Install”.	I	can	
simply	add	the	new	chapter	using	normal	text	insertion	like	this:	

Chapter 1: Intro	
Chapter 2: Install	
Chapter 2: 1 Weird modal editing trick	

Chapter 3: The numbered marks 1-9	
Chapter 4: Navigating things	
...	

Then	I	can	use	<Shift-V>	to	select	the	chapters	originally	numbered	2	and	higher.	Then	I	
use	a	navigation	keystroke	(such	as	s	or	})	to	jump	to	the	next	paragraph.	When	I	hit	ctrl-
a,	the	chapter	numbers	are	incremented,	but	the	1	in	1 Weird trick	will	not	be	impacted,	
nor	will	the	numbered	marks	indicators.	

Chapter 1: Intro	
Chapter 2: Install	
Chapter 3: 1 Weird modal editing trick	
Chapter 4: The numbered marks 1-9	
Chapter 5: Navigating things	
...	

The dial.nvim extra

If	the	increment	and	decrement	keybindings	sound	kind	of	like	that	one	weird	kitchen	
unitasker	that	is	helpful	once	a	month,	you	might	want	to	consider	installing	the	
editor.dial	extra	from	:LazyExtras.	

This	extra	comes	with	the	dial.nvim	plugin	which	allows	you	to	increment	and	decrement	
a	bunch	of	other	cool	stuff.	I	mostly	use	it	to	swap	boolean	expressions	(both	ctrl-a	and	
ctrl-x	will	alternate	true	to	false	and	vice	versa.),	but	it	can	also	increment	words	
(“Qirst”	increments	“second”),	months	(“December”	increments	to	“January”),	version	
numbers,	Markdown	headers,	and	more.	More	importantly,	you	can	extend	it	with	your	own	
patterns	if	you	need	to.	

Changing indenta/on

The	>	and	<	keybindings	can	be	used	in	normal	mode	to	indent	or	dedent	text.	Most	often,	
you’ll	use	them	doubled	up	(as	in	<<	and	>>)	to	change	the	indentation	of	the	current	line.	
However,	you	can	also	change	the	indentation	of	any	motion.	Another	common	one	is	
>S<label>	to	indent	a	block	of	text,	and	>ap	will	indent	an	entire	blanks-delimited	
paragraph.	

These	verbs	can	get	a	little	confusing	when	it	comes	to	using	counts.	You	might	expect	2>>	
to	indent	the	current	line	by	two	indentation	levels,	but	instead,	it	will	indent	two	lines	by	
one	indentation	level.	

If	you	want	to	change	by	multiple	indents	in	one	command,	you	will	need	to	resort	to	visual	
mode.	To	indent	the	current	line	by	Qive	indentation	widths,	the	quickest	way	is	with	v5>,	

compared	to	typing	ten	greater-than	symbols.	This	works	with	any	visual	selection,	so	you	
can	use,	for	example,	va{5>	to	indent	an	entire	block	Qive	levels.	

Often,	all	you	want	to	do	is	“make	the	indentation	correct	for	this	programming	language”.	If	
conform.nvim	is	conQigured	correctly,	the	easiest	way	to	do	this	is	to	just	save	the	Qile.	
LazyVim	has	format	on	save	enabled	by	default,	and	if	it	can	Qind	a	formatter,	it	will	use	it.	
You	can	also	use	gq	with	a	motion	or	selection	(most	commonly	gqag	to	format	the	entire	
Qile)	to	apply	formatting.	

However,	if	you	don’t	want	to	save,	or	aren’t	using	conform,	you	can	also	use	the	=	verb.	The	
behaviour	of	=	depends	a	little	on	the	programming	language,	but	it	generally	applies	the	
indentation	engine	to	the	visually	selection	(or	motion	selected)	lines	as	though	you	had	
pressed	enter	to	start	a	new	line.	The	end	result	is	that	all	lines	will	be	indented	
“correctly”	for	some	deQinition	of	“correctly”.	If	you’re	lucky,	it	will	be	the	same	as	your	
deQinition!	

Reflowing text

I’ve	used	the	gw	command	a	lot	while	writing	this	book.	It	effectively	rewraps	(w	for	wrap)	
all	the	text	at	the	eighty	character	limit	(or	any	ruler	number,	conQigurable	with	:set
textwidth=<number>),	without	breaking	words.	

Most	often,	I	use	gww	to	rewrap	the	current	line	so	that	it	has	linebreaks	at	the	appropriate	
position	or	gwip	to	rewrap	an	entire	paragraph.	But	gw	works	with	any	motion	or	visually	
selection.	To	rewrap	an	entire	Qile,	use	gwig.	

This	command	relies	heavily	on	the	existence	of	newlines.	Effectively	any	two	consecutive	
lines	will	be	joined	into	a	single	line	(if	they	Qit	in	80	characters).	For	me,	this	has	meant	
that	if	I	forget	to	put	a	newline	after	a	heading,	my	Qirst	paragraph	gets	tied	up	into	the	
heading,	which	is	obviously	not	what	I	want.	

Filtering through external programs

You	can	also	pipe	text	out	to	any	external	program	that	is	a	good	Unix	citizen:	processing	
input	on	STDIN	and	outputting	it	to	STDOUT.	To	do	so,	visually	select	the	text	you	want	to	
pipe	in	visual	mode.	Then	type	a	!.	This	will	open	the	command	window	with	the	visual	
selection,	and	is	a	shortcut	for	:'<,'>!.	Then	type	a	command	on	the	path	and	the	selected	
text	will	be	replaced	with	the	output	of	that	command.	

Here	are	some	examples:	

• !grep -v a	will	replace	the	selection	with	the	same	text,	but	any	lines	that	contain	
the	letter	“a”	will	be	removed.	

• !tr -s ' '	will	call	the	translate	command,	replacing	all	instances	of	multiple	
spaces	with	a	single	space.	

• !jq	will	format	the	json	text	with	jq	
• !pandoc -f markdown -t html	is	a	handy	way	to	quickly	write	html	by	starting	

with	simpler	markdown	syntax.	
• !./my-custom-script	will	pipe	the	command	through	an	arbitrary	script	you	

wrote.	
• !python ./something.py	will	pipe	the	command	through	a	python	script	you	

wrote.	
If	you	want	to	run	a	command	without	modifying	the	text,	don’t	supply	a	range.	
For	example,	:!mkdir foo	will	run	the	mkdir	command	without	overwriting	
your	Qile	content.	

I	think	it	is	unfortunate	that	this	feature	is	not	used	more.	Many	features	that	are	built	into	
Neovim	or	supplied	as	plugins	could	just	as	easily	be	CLI	programs	that	operate	on	piped	
input	and	output.	As	just	one	example,	the	:sort	command	that	ships	with	Neovim	is,	in	
my	opinion,	just	bloating	the	editor	when	!sort	can	run	the	external	sort	utility	just	as	
well.	

Abbrevia/ons (and filetype configura/on)

Vim	abbreviations	have	been	around	since	the	earliest	days	of	the	editor.	They	are	an	easy	
way	to	have	“shortcut”	words	that	expand	to	something	else	entirely	without	leaving	insert	
mode.	

To	create	a	temporary	abbreviation,	just	use	the	command	:iabbr <shortcut>
<expansion>.	You	can	use	Vim’s	keybinding	syntax	to	represent	special	characters	like	
<Enter>,	and	<Tab>.	You	can	even	use	<Left>	to	reposition	the	cursor	within	the	
abbreviated	text.	

For	example,	the	command	:iabbr ifmain if __name__ ==
"__main__":<Enter>main()<Left>	will	expand	the	text	ifmain<Space>	to	the	
following,	and	place	the	cursor	inside	the	parentheses	after	main:	

if __name__ == "__main__":	
 main()	

The	i	in	iabbr	means	it	will	work	in	insert	mode,	and	abbr	is	short	for	“abbreviate.”	

Note	that	I	didn’t	have	to	explicitly	add	any	indentation	after	the	Enter	because	the	python	
indentation	engine	takes	care	of	that	for	me.	Note	also	that	the	<Space>	I	typed	after	

ifmain	was	inserted	between	the	brackets.	If	you	need	to	expand	an	abbreviation	without	
adding	spaces,	use	the	Control-]	keybinding	instead.	

And	if	you	need	to	insert	the	words	ifmain	without	expanding	them,	type	
ifmain<Escape>	to	return	to	normal	mode	without	expanding.	

This	abbreviation	will	only	exist	until	I	close	the	editor.	To	make	it	permanent,	I	need	to	add	
it	to	my	conQiguration.	Typically,	abbreviations	only	make	sense	within	the	context	of	a	
single	Qiletype,	so	I	collect	mine	in	the	autocmds.lua	using	syntax	like	this:	

vim.api.nvim_create_autocmd("FileType", {	
 pattern = { "python" },	
 callback = function()	
 vim.cmd('iabbr ifmain if __name__ ==
"__main__":<Enter>main()<Left>')	
 vim.cmd("iabbr frang for i in range():<Enter><Esc>F(i")	
 -- Other Python abbreviations	
 end,	
})	

The	frang	abbreviation	shows	another	neat	trick:	You	can	use	the	string	<Esc>	to	enter	
normal	mode	and	move	the	cursor.	I	used	F(to	“Qind	the	previous	open	paren”	followed	by	
i	to	enter	insert	mode	inside	the	range()	parens.	

Vim	abbreviations	have	been	around	forever	and	do	the	job	well.	I	still	use	them	probably	
because	I	am	old,	but	the	world	has	largely	moved	on	to	snippets	instead.	

Snippets

LazyVim	ships	with	the	nvim-snippets	plugin,	an	interface	to	Neovim	0.10’s	built-in	
snippets	interface.	It	can	load	VS	Code-style	snippets.	I’m	not	going	to	go	into	detail	of	how	
to	conQigure	all	that	,	but	I	do	want	to	discuss	some	of	the	nuanced	details	of	snippets.	

nvim-snippets	integrates	with	nvim-cmp,	which	we’ve	touched	on	before,	for	
completions.	By	default,	nvim-cmp	pops	up	a	pretty	menu	with	a	bunch	of	completions	as	
you	type.	For	example,	here’s	what	I	see	if	I	type	if	in	a	Python	Qile:	

	

The	left	column	shows	possible	completions	in	a	neutral	text	colour.	The	middle	column	
indicates	two	(in	this	case)	different	completion	sources:	Snippets	or	the	Copilot	AI	engine	
(this	isn’t	enabled	by	default,	but	there’s	an	extra	for	it	that	we’ll	discuss	in	chapter	16).	If	I	
was	working	in	a	real	project,	it	would	likely	also	include	some	functions	and	classes	that	
I’ve	deQined.	

I	can	move	my	cursor	up	and	down	the	list	with	the	arrow	keys	(j	and	k	won’t	work	here	
because	I’m	still	in	insert	mode).	Most	completions	have	a	preview	box	pop	up	with	
documentation	or	an	example	of	the	completion.	

This	snippet	was	created	by	the	FriendlySnippets	plugin,	which	is	a	massive	collection	
of	useful	snippets	that	ships	with	LazyVim	by	default.	(Also	notice	that	there	is	also	a	
ifmain	snippet	much	like	the	abbreviation	I	apparently	didn’t	actually	need	to	deQine	
above!)	

If	I	then	press	the	Control-y	key,	which	conQirms	a	completion	(or	Enter	if	you	use	the	
LazyVim	defaults	or	Right Arrow	if	you	have	conQigured	nvim-cmp	the	way	I	have),	the	
snippet	is	inserted	my	editor:	

	

The	editor	is	currently	in	“Select”	mode,	an	uncommon	mode	that	is	similar	(but	not	really)	
to	Visual	mode.	In	LazyVim’s	default	conQig,	I’m	not	aware	of	any	way	to	get	into	select	

mode	other	than	accepting	a	snippet!	So	we	won’t	go	into	too	much	detail	about	this	mode	
outside	the	context	of	snippets.	

The	key	point	is	that	“condition”	is	currently	highlighted,	and	I	can	start	typing	immediately	
to	overwrite	it,	almost	as	though	I	was	in	Insert	mode.	Once	the	condition	has	been	
replaced,	I	can	press	the	<Tab>	key,	which	the	nvim-snippets	plugin	interprets	as	“jump	
to	the	next	Qield	in	the	snippet.”	Now	the	pass	inside	the	if	is	highlighted	instead.	

The	<Tab>	key	only	works	like	this	if	nvim-snippets	is	aware	it	is	in	a	snippet	that	has	
Qields.	

Defining new snippets

If	the	FriendlySnippets	snippets	aren’t	enough	for	you,	you	can	deQine	your	own	
snippets	using	the	ubiquitous	VS	Code	Snippet	syntax	and	load	them	in	nvim-snippets.	As	a	
quick	example,	here’s	how	to	create	a	snippet	for	a	boilerplate	Svelte	component	using	the	
lua	snippet	syntax:	

1. If	it	doesn’t	exist,	create	the	~/.config/nvim/snippets/	directory	to	hold	your	
snippets.	This	is	the	default	location	nvim-snippets	will	look	for	snippets.	

2. Create	a	subdirectory	in	that	directory	for	the	Qiletype	you	want	to	create	a	snippet	
for.	You	can	discover	the	Neovim	Qiletype	of	the	currently	open	Qile	with	the	:set ft	
command.	In	this	case,	we’ll	create	~/.config/nvim/snippets/svelte/.	

3. Create	a	json	Qile	in	the	svelte	directory.	It	doesn’t	matter	what	name	you	give	it,	
but	I’ll	call	mine	svelte.json.	It	can	contain	multiple	snippets.	Here’s	how	my	
boilerplate	component	snippet	looks:	

	 {	
 "Boilerplate Component": {	
 "prefix": "<scr",	
 "description": "Basic svelte boilerplate",	
 "body": [
 "",	
 "",	
 "${2:<div></div>}",	
 "",	
 "<style>",	
 " $3",	
 "</style>"	
]	

 }	
}	

If	you	are	unfamiliar	with	VS	Code	snippet	syntax:	

• prefix	is	the	string	you	type	in	insert	mode	to	trigger	the	snippet.	In	this	case,	it	is	
<scr.	

• description	is	a	string	that	describes	it	in	the	completion	menu.	
• body	is	a	list	of	lines	in	the	snippet.	
• $1,	$2,	$3	represent	“tab	stops”	in	the	snippet.	
• ${2:<div></div>}	represents	a	tab	stop	with	placeholder	content	that	can	be	

typed	over.	

If	I	restart	Neovim	and	load	a	svelte	Qile,	I	can	type	<scr	to	insert	this	snippet.	The	default	
output	looks	like	this:	

	
	
<div></div>	
	
<style>	
</style>	

Summary

This	chapter	introduced	a	grab	bag	of	editing	tips,	starting	with	word	counts	and	
transposing	characters,	and	then	moving	on	to	managing	comments,	indentation	and	
formatting.	

Finally,	we	covered	the	old-but-not-busted	abbreviation	syntax	and	the	new-hotness	
Snippets	engine	that	LazyVim	ships	with.	

In	the	next	chapter,	we’ll	start	discussing	something	completely	different:	version	control	in	
LazyVim.	

Chapter 15: Source Control

Chapter	15:	Source	Control	-	LazyVim	for	Ambitious	Developers	

https://code.visualstudio.com/docs/editor/userdefinedsnippets%23_create-your-own-snippets

LazyVim	ships	with	several	features	to	manage	your	source	control	history,	and	there	are	
some	excellent	best-in-class	third-party	plugins	you	can	use	as	well.	Some	of	these	plugins	
work	with	multiple	version	control	systems,	although	some	of	them	are	git-centric.	This	
book	will	assume	you	use	git	because,	well,	you	probably	do,	even	if	you	use	other	systems	
as	well.	

The Integrated Terminal (A rant)

For	reasons	I	cannot	explain,	Neovim	ships	with	a	terminal	emulator.	It	is	bizarre	to	me	that	
an	editor	that	runs	in	a	terminal	ships	a	terminal.	It	is	literally	possible	to	open	a	terminal,	
open	Neovim,	open	a	terminal	in	Neovim,	and	open	Neovim	in	a	terminal	in	Neovim.	

Add	some	nested	ssh	sessions	if	you	really	want	to	make	a	mess.	

I	don’t	need	a	terminal	in	my	editor.	I	have	a	terminal	already,	an	excellent	one.	I	just	use	
Kitty	splits,	tabs,	and	windows	when	I	need	a	new	terminal.	The	smart-splits	plugin	allows	
me	to	switch	between	editor	and	terminal	seamlessly	and	Kitty	even	manages	installing	
itself	over	ssh	for	me.	

Or	I	press	Control-z,	which	is	the	traditional	way	Vim	users	used	to	access	a	terminal.	It	is	
a	shortcut	that	I	really	wish	hadn’t	gone	out	of	style.	Pressing	Control-z	“suspends”	
Neovim.	If	you’re	not	in	the	know,	you’ll	think	it	closed	your	editor	without	saving,	because	
the	window	disappears	and	returns	you	to	your	terminal.	

But	fear	not!	It	is	merely	suspended,	as	indicated	by	the	'nvim' has stopped	message	on	
the	terminal.	

	

As	this	screenshot	also	shows,	you	can	see	the	list	of	stopped	(or	running)	background	jobs	
using	the	jobs	command	in	any	shell	(I	recently	switched	to	Qish	and	highly	recommend	it).	
The	fg	(short	for	foreground)	command	starts	the	suspended	Neovim	process	back	up.	If	

you	have	multiple	suspended	jobs,	the	fg %#	command	can	be	used	to	choose	a	speciQic	job	
id	(e.g.	fg %1	will	run	the	job	with	id	1	in	the	Qirst	column	of	the	jobs	output).	

This	is	not	a	Neovim-speciQic	feature.	The	Control-z	trick	works	with	(almost)	any	long-
running	shell	command.	You	can	even	set	a	suspended	task	to	keep	running	in	the	
background	by	using	the	bg	command	instead	of	fg	(though	if	the	background	job	prints	to	
stdout	you’ll	quickly	become	confused).	

Between	terminal	splits	and	Control-z,	there’s	just	no	need	for	the	editor	to	have	its	own	
terminal	embedded	with	it.	Still,	Neovim	ships	with	an	integrated	terminal,	so	I	should	
probably	explain	how	to	use	it.	

The Integrated Terminal (for real this /me)

You	can	pop	up	a	terminal	at	any	time	in	Lazyvim	using	the	keybinding	Control-/.	It	will	
appear	in	front	of	all	your	other	editor	windows	(unless	you	have	the	edgy	extra	enabled,	in	
which	case	it	will	show	up	in	the	bottom	half	of	the	window)	and	can	be	dismissed	with	
Control-/	again.	

Neovim’s	terminal	window	is	a	super	weird	hybrid	terminal	and	vim	window.	Once	the	
terminal	is	open,	you	can	use	normal	mode	commands	to	navigate	around	it,	but	only	if	you	
know	the	secret	and	hard-to-type	incantation	<Control-\><Control-n>.	Escape	WILL	
NOT	put	you	in	normal	mode,	even	though	your	Qingers	are,	by	now,	conditioned	to	hit	
Escape	reQlexively.	

This	actually	makes	sense	because	Escape	is	a	common	key	to	need	to	type	in	various	
terminal	programs,	so	it	would	be	rude	for	Neovim	to	steal	it.	

In	Normal	mode,	you	can	navigate	anywhere	in	the	terminal	window	using	any	of	the	
navigation	keys	including	seek	and	search	modes.	This	can	occasionally	be	helpful	if	you	
need	to	yank	some	outputted	text	to	the	clipboard.	

Pressing	a	key	such	as	a	or	i	will	send	you	back	to	“Terminal	mode”	which	effectively	just	
sends	every	keystroke	to	the	program	currently	running	in	the	terminal	(probably	your	
shell).	

Annoyingly,	this	means	you	can’t	use	Normal	mode	to	reposition	your	cursor	on	the	
command	line;	it	will	go	back	to	wherever	it	was	when	you	last	typed	<Control-
\><Control-n>.	

If	you	want	to	use	vim	normal	modes	to	edit	your	command	line	(in	any	terminal
—not	just	inside	Neovim)	conQigure	your	shell	to	use	“vi	mode.”	All	modern	shells	
support	some	version	of	this,	and	it	usually	allows	you	to	use	Esc	to	put	the	shell	

in	a	pseudo-normal	mode.	It	gives	you	commands	like	w	and	b	for	navigation	and	
basic	line-editing	commands	like	d	and	c	to	edit	the	command	line.	

There	are	third-party	plugins	that	try	to	make	the	terminal	experience	more	consistent	and	
enjoyable,	but	in	my	opinion,	they	are	not	worth	the	trouble.	I	can	just	press	cmd-enter	to	
get	a	new	Kitty	terminal	pane	and	have	a	perfectly	normal	terminal	experience.	

Checking your git status

Lazyvim	is	preconQigured	with	a	handful	of	carefully	conQigured	plugins	that	make	your	
version	control	life	much	better.	

Probably	the	simplest	of	these	uses	your	conQigured	Qile	picker	(Telescope	or	fzf-lua,	as	
discussed	in	Chapter	4)	to	list	Qiles	that	have	changed	since	the	last	commit.	This	will	
behave	similarly	to	other	Qile	picker	operations,	except	it	only	lists	Qiles	that	have	
modiQications	in	git.	

You	can	open	it	with	<Space>gs.	I	use	it	a	lot	for	switching	between	Qiles	related	to	
whatever	feature	I	am	currently	working	on,	and	actually	prefer	it	to	the	buffer	picker	
(which	only	shows	opened	Qiles)	we	discussed	in	Chapter	9.	

The	popup	behaves	slightly	differently	depending	on	whether	you	use	Telescope	or	fzf.lua.	
I’ll	explain	with	Telescope	Qirst,	and	mention	how	fzf.lua	is	different	afterwards.	(I	hate	that	
folke	makes	me	do	this.	Please,	can	we	just	collectively	settle	on	one	best	picker	and	use	it?)	

With Telescope

This	Telescope	screenshot	shows	that	I	have	modiQied	two	Qiles	since	my	last	commit:	

	

The	preview	pain	shows	the	diff	of	lines	I	have	added	and	removed.	On	the	left,	you	can	see	
that	I	have	page.svx	focused,	and	a	preview	of	some	of	the	changes	in	this	Qile	on	the	right.	

The	confusing	bit	to	pay	attention	to	is	the	Qirst	two	columns.	They	indicate	your	git	status,	
and	their	meaning	can	be	devilishly	hard	to	remember.	The	symbols	themselves	are	
straightforward:	

• ~	means	the	Qile	on	that	line	contains	modiQications	since	the	last	commit	
• -	means	it	has	been	deleted	
• ?	means	it	is	an	untracked	Qile	(has	been	added	to	the	working	directory	but	not	

staged	or	committed)	
• +	means	it	is	a	new	Qile	that	has	been	staged	in	git	

If	the	sign	shows	up	in	the	4irst	column,	it	means	the	Qile	has	been	staged	and	will	be	
included	in	the	next	commit.	If	it	is	in	the	second	column,	then	it	means	the	Qile	is	not	yet	
staged.	If	a	~	is	in	both	columns,	some	parts	of	it	have	been	staged	and	some	parts	have	not.	

I	had	to	use	this	picker	quite	a	few	times	before	I	could	remember	whether	column	1	or	
column	2	mean	“staged”,	and	if	all	or	none	of	the	Qiles	are	staged	it	can	be	hard	to	tell	which	
column	is	empty.	

In	addition	to	allowing	you	to	effectively	view	your	git	status,	this	picker	also	allows	you	to	
stage	entire	Qiles.	To	do	so,	focus	a	Qile	and	hit	the	<Tab>	key.	If	it	is	staged	it	will	become	
unstaged	and	vice	versa,	moving	the	symbol	between	the	Qirst	and	second	columns..	

With Fzf.lua

Fzf.lua	behaves	similarly,	but	not	identically	to	Telescope.	If	you’ve	installed	the	fzf.lua	
extra,	the	same	keybinding	(<Space>gs)	pops	up	an	fzf	window	instead	(ensure	the	delta-
pager	CLI	tool	is	installed	to	get	the	pretty	diffs):	

	

The	main	difference	is	that	you	use	the	left	and	right	arrow	keys	to	stage	or	unstage	a	Qile	
instead	of	Tab,	and	you	can	additionally	use	the	Control-x	keybinding	to	reset	an	entire	
Qile	to	the	last	commit	state.	Unlike	Telescope,	these	keybindings	are	helpfully	written	
across	the	top	of	the	picker	so	you	don’t	have	to	memorize	them.	

The	two	columns	are	labelled	+	and	-.	I’m	not	sure	why	those	symbols	were	chosen,	as	they	
don’t	reQlect	whether	Qiles	or	lines	are	added	or	deleted.	The	+	column	holds	Qiles	that	have	
been	staged	to	go	in	the	next	commit,	while	the	-	column	holds	a	status	for	Qiles	that	have	
changed	but	have	not	yet	been	staged.	This	is	the	same	as	Telescope,	but	it’s	a	little	bit	
clearer	with	the	heading	symbols	on	there.	

Other pickers

Telescope	and	fzf.lua	both	come	with	pickers	to	view	and	search	commit	history	
(<Space>gc),	kind	of	like	a	log	browser,	and	to	check	out	a	branch.	The	latter	doesn’t	have	a	
keybinding	for	some	reason,	but	you	can	bind	one	to	:Telescope git_branches	
or	:FzfLua git_branches	if	you	like	the	picker	UI	for	this	task.	

There	are	a	variety	of	less	commonly-used	git-related	pickers	you	can	Qind	by	
typing	either	:FzfLua	or	:Telescope	and	then	Enter	and	git.	

Git Files in Neotree

Neotree	also	has	a	Git	status	viewer.	It	has	the	advantage	of	displaying	any	changed	Qiles	
inside	a	folder	hierarchy.	Here’s	the	same	two	Qiles	from	the	previous	example	as	rendered	
in	Neotree:	

	

To	stage	and	unstage	a	Qile	with	Neotree,	use	ga	(git	add)	and	gu	(git	unstage)	while	your	
cursor	is	over	that	line.	The	A	keybinding	will	stage	all	unstaged	Qiles.	

You	can	also	use	gc	to	commit	the	current	state.	This	pops	up	a	crappy	little	text	entry	
window	that	is	absolutely	not	suitable	for	typing	a	proper-length	commit	message,	so	I	
suggest	avoiding	it.	You	can	also	use	gp	to	push	the	current	branch	to	the	remote	repository.	
I	recommend	using	the	lazygit	integration	discussed	later	instead,	but	these	commands	
are	available	if	you	spend	a	lot	of	time	in	Neotree.	

Status of the currently focused file

Every	buffer	has	a	couple	subtle	indications	of	the	changes	in	that	Qile.	Consider	this	
screenshot:	

	

Notice	the	left	sidebar,	to	the	right	of	the	line	numbers.	it	contains	a	green	bar,	a	small	red	
triangle,	and	a	short	orange	bar.	These	indicators	all	show	that	lines	have	been	added,	
removed,	and	modiQied,	respectively.	

Additionally,	in	the	status	bar,	just	to	the	left	of	the	Qile	progress	indicator	we	see	these	
icons,	which	summarize	the	same	information:	

	

Staging from the editor

You	can	add	Qiles	to	git’s	index	(so	they	are	ready	to	commit)	right	from	the	editor.	The	
<Space>gh	menu	(mnemonic	is	“git	hunks”,	although	you	may	think	of	it	as	“git	hub”	if	
that’s	where	most	of	your	work	happens)	has	a	bunch	of	interesting	subcommands	you	can	
leverage	for	this:	

	

You	can	use	<Space>ghS	to	stage	an	entire	Qile,	which	would	move	it	to	the	left	column	in	
the	git	status	pickers	we	discussed	above.	If	you	want	to	create	a	patch	of	a	subset	of	your	
changes,	navigate	to	the	hunk	you	want	to	stage	([h	and]h	are	super	handy	for	this)	and	
hit	<Space>ghs.	

Most	people	have	an	unfortunate	habit	of	just	committing	everything	instead	of	properly	
curating	their	history,	but	if	you	are	one	of	the	rare	folks	who	uses	git	properly	(please	be	
that	person),	you’ll	use	this	command	a	lot.	

You	can	also	reset	a	hunk	(effectively	making	it	the	same	as	it	was	at	the	time	the	last	
commit	was	made)	using	<Space>ghr.	if	you	want	to	reset	the	entire	Qile,	use	the	“but	
bigger”	<Space>ghR.	Resetting	is	a	destructive	operation,	so	be	careful	(though	u	for	undo	
can	usually	get	you	back	to	where	you	were).	

If	you	accidentally	stage	a	hunk,	use	<Space>ghu	to	unstage	it.	Unlike	reset,	this	won’t	
change	the	Qile;	the	changes	will	still	be	there;	they	just	won’t	be	staged	anymore.	

The	Blame	line	(<Space>ghb)	shows	the	commit	that	last	changed	the	line	the	cursor	is	
currently	on,	useful	for	answering	the	all-important	question	“Why	on	Earth	did	I	do	that?”	

The	Preview	hunk	(<Space>ghp)	temporarily	renders	the	original	and	changed	version	of	a	
hunk	(one	above	the	other)	so	you	can	see	exactly	what	changed.	

The	Diff this	(<Space>ghd	and	<Space>ghD)commands	do	the	same	except	in	a	side-
by-side	view	that	we	will	discuss	later	in	this	chapter.	

Personally,	I	use	many	of	these	commands	too	often	for	the	number	of	keystrokes	required	
to	pop	them	up.	So	I’ve	created	an	extend-gitsigns.lua	Qile	in	my	plugins	directory	that	
copies	them	from	<Space>gh	to	<Space>h:	

return {	
 "lewis6991/gitsigns.nvim",	
 keys = {	
 {	
 "<leader>hb",	
 "<cmd>Gitsigns blame_linepcr>",	
 desc = "Stage Hunk"	
 },	
 {	
 "<leader>hs",	
 "<cmd>Gitsigns stage_hunk<cr>",	
 desc = "Stage Hunk"	
 },	
 {	
 "<leader>hS",	
 "<cmd>Gitsigns stage_buffer<cr>",	
 desc = "Stage Buffer"	

 },	
 {	
 "<leader>hr",	
 "<cmd>Gitsigns reset_hunk<cr>",	
 desc = "Reset Hunk"	
 },	
 {	
 "<leader>hR",	
 "<cmd>Gitsigns reset_buffer<cr>",	
 desc = "Reset Buffer"	
 },	
 {	
 "<leader>hu",	
 "<cmd>Gitsigns undo_stage_hunk<cr>",	
 desc = "Undo Stage Hunk"	
 },	
 },	
}	

I	got	these	by	copying	them	from	the	git-signs	conQig	on	the	LazyVim	website	and	
converting	it	from	map	calls	to	the	keys =	format.	

Lazygit

Lazygit	(which	is	not	maintained	by	folke	in	spite	of	sharing	the	Lazy	namespace	with	
LazyVim	and	Lazy.nvim)	is	a	terminal	UI	tool	for	interacting	with	git.	It	is	a	separate	
program	that	you	will	need	to	install	with	your	operating	system’s	package	manager	
(e.g.	brew install lazygit)	if	you	want	to	use	it.	

LazyVim	is	preconQigured	to	show	lazygit	in	a	terminal	window	using	the	keybinding	
<Space>gg.	I	won’t	go	into	all	the	details	of	how	to	use	this	third-party	program.	It	can	do	
anything	git	can	do	in	a	much	more	user-friendly	interface.	

Lazygit	takes	a	bit	of	study	to	get	used	to,	but	it	has	helpful	menus	and	mnemonics	for	its	
keybindings	so	the	learning	curve	is	relatively	gentle.	

Ironically,	I	used	lazygit	(in	its	standalone	format	from	the	command	line)	a	lot	more	before	
I	started	using	LazyVim.	I	used	to	stage	changes	using	lazygit,	but	now	I	use	the	<Space>h	
menu	we	just	covered	instead.	

I	also	do	most	of	my	git	work	with	the	exceptional	Graphite	tool	(visit	https://graphite.dev	
for	those	interested),	which	simpliQies	many	of	the	Qlows	I	used	to	use	lazygit	for	(especially	

rebasing).	I	still	use	lazygit	every	day;	I	just	don’t	have	it	open	100%	of	the	time	like	I	used	
to.	

Diff Mode

Neovim	comes	with	a	very	powerful,	but	slightly	hard-to-learn	diff	viewing	mode.	It	shows	
“before”	and	“after”	Qiles	side	by	side	and	can	even	be	conQigured	to	show	the	“parent”	and	
changed	state	if	you	want	a	fancy	merge	tool.	

There	are	several	different	ways	to	get	yourself	into	diff	mode.	The	basic	way	is	to	specify	it	
when	you	open	two	Qiles	on	the	command	line:	

nvim -d file1 file2	

This	opens	the	indicated	Qiles	side	by	side.	Most	often,	you	won’t	have	two	separate	Qiles,	
though.	Instead,	you’ll	want	to	see	the	difference	between	the	current	Qile	and	the	staging	
index,	which	you	can	do	with	the	shortcut	<Space>ghd.	Or	use	<Space>ghD	to	show	the	
differences	between	the	current	Qile	and	the	last	commit,	regardless	of	what	has	been	
staged.	

Important:	Once	you	are	done	operating	in	diff	mode,	it	can	be	tricky	to	get	back	
to	the	normal	Qile.	The	issue	is	that	when	a	Qile	is	in	diff	mode,	it	stays	that	way,	
even	if	other	windows	are	opened	or	closed.	The	secret	is	to	use	the	:diffoff	
command,	which	will	disable	“diff	view”	for	the	current	buffer.	This	doesn’t	close	
the	two	side-by-side	windows,	though;	you’ll	need	to	use	normal	window	and	
buffer	management	tooling	such	as	<Space>bd	and	<Control-w>q	to	do	that.	

Note	that	by	default,	the	diff	view	will	collapse	any	code	that	is	identical	between	the	two	
Qiles	into	a	single	fold.	Use	the	code	unfolding	command	zo	to	expand	a	section.	

Edi/ng Diffs

If	you	use	the	<Space>ghd	command	to	show	your	Qile	in	diff	against	the	index	mode,	you	
can	keep	editing	the	Qile	to	make	additional	changes.	If	you	do	this,	only	edit	the	Qile	on	the	
right.	This	is	the	“working”	Qile.	The	Qile	on	the	left	is	the	“index”	Qile;	it	shows	the	staged	
changes.	If	you	want	to	“edit””	the	Qile	on	the	left,	use	the	<Space>ghd,	<Space>ghr,	and	
<Space>ghu	to	stage,	reset,	and	unstage	hunks	from	the	right	side.	It	is	not	forbidden	to	
edit	the	index	Qile	directly,	but	it	will	confuse	the	diff	mode	machinery,	so	stick	to	staging	
and	unstaging	from	the	right	side.	

When	working	with	diff	view	like	this,	I	Qind	that	the	stage,	reset,	and	unstage	keybindings	
best	match	the	mental	model	I	am	used	to.	However,	there	are	two	kind	of	weird	commands	
built	into	Neovim	that	you	may	sometimes	need	to	reach	for:	:diffget	and	:diffput.	

These	are	more	commonly	typed	as	:diffg	and	:diffp	to	save	a	couple	keystrokes.	

These	commands	are	most	often	used	in	visual	mode	(or	with	a	range),	and	they	essentially	
mean	that	(within	that	range)	we	should	either	“make	this	Qile	the	same	as	the	other	Qile”	or	
“make	the	other	Qile	the	same	as	this	Qile”,	respectively.	

Consider	these	two	Qiles	that	are	slightly	different:	

	

The	Qile	on	the	left	represents	the	state	of	my	index,	while	the	Qile	on	the	right	is	my	working	
copy.	The	indexed	version	was	missing	the	word	“Two”,	so	I	have	added	that	on	the	right.	It	
also	had	an	extra	“Four	Point	Five”	line	that	I	have	removed	on	the	right.	And	I	modiQied	the	
spelling	of	the	word	“Six”.	

Let’s	explore	a	couple	ways	to	make	these	Qiles	identical	with	:diffg	and	:diffp.	You	can	
use	these	commands	on	either	Qile,	but	it	usually	makes	sense	to	operate	on	only	one	of	
them.	For	this	example,	assume	I’m	working	on	the	right-hand	Qile.	

I	can	use	any	navigation	commands	to	jump	to	the	second	line	of	the	Qile.	If	you	are	editing	a	
real	git	indexed	Qile,	the	[h	and]h	keybinding	are	probably	useful	for	jumping	between	
hunks.	However,	when	you	are	in	“diff”	mode	you	can	also	use	the	[c	and]c,	which	mean	
“jump	between	changes,”	but	only	when	you	are	in	“diff”	mode.	(in	a	non-diff	window,	
LazyVim	has	bound	those	keys	to	jump	between	classes	or	types.)	I	usually	just	use	[h	
and]h,	but	in	those	instances	where	I	am	using	a	diff	view	that	is	not	attached	to	git	history,	
[c	and]c	should	not	be	forgotten.	

So	with	my	cursor	on	the	Qirst	line	of	the	Qile,	[c	or	[h	will	jump	to	the	second	line,	which	
contains	the	word	Two	in	my	Qile,	but	not	the	index.	

I	want	to	stage	this	change,	so	I	type	:diffp,	which	means	“make	the	other	Qile	the	same	as	
this	one.”	

The	next	line	is	Four Point Five	in	the	left	Qile,	but	was	deleted	in	the	right	Qile.	For	the	
sake	of	argument,	let’s	say	I	want	to	“unstage”	this	change,	which	is	to	say	“make	the	right	
Qile	the	same	as	the	left	Qile”.	To	do	this	from	the	right	window,	I	can	use	Shift-V	to	enter	
visual	line	mode,	and	select	the	lines	containing	Four	and	Five	as	well	as	the	blank	red	

space	between	those	two	lines	representing	the	deleted	line.	Now	I	can	type	:diffg	or	
diffget	which	means	“get	the	contents	of	the	other	window	and	make	my	window	match	
it.”	Since	:diffget	and	:diffput	accept	ranges,	it	passes	the	visual	selection	with	the	
usual	'<	and	'>	marks.	

Tip:	If	you	Qind	you	like	the	above	diff	interface,	but	Qiguring	out	which	Qiles	have	
differences	is	frustrating,	you	may	want	to	conQigure	the	sindrets/
diffview.nvim	plugin.	I	personally	just	use	the	git	status	telescope	picker,	but	
the	diffview.nvim	plugin	has	a	nice	interface	and	some	handy	commands.	

Configuring Vim diff as merge tool

Everyone	seems	to	hate	resolving	merge	conQlicts.	Armed	with	diff	mode	and	rebasing,	I	
actually	Qind	the	process	kind	of	enjoyable.	The	trick	is	to	have	a	slightly	complicated	
~/.gitconfig	(and	a	very	large	monitor).	

I	can’t	help	you	with	the	monitor,	but	the	.gitconfig	needs	to	look	like	this:	

[diff]	
 tool = vimdiff	
[merge]	
 tool = vimdiff	
 conflictstyle = zdiff3	
[mergetool "vimdiff"]	
 cmd = nvim -d $LOCAL $BASE $REMOTE $MERGED \	
 -c '$wincmd w' -c 'wincmd J'	

The	zdiff3	conQlictstyle	makes	diffs	a	bit	easier	to	read	by	automatically	resolving	
identical	lines.	The	two	tool =	lines	say	to	use	the	vimdiff	merge	tool	that	is	conQigured	
on	the	last	line.	

That	last	line	is	a	command	to	open	Neovim	with	a	whopping	FOUR	windows	open	and	
focuses	the	appropriate	one.	

To	demonstrate	this,	I	made	a	new	git	repo	with	two	branches	with	conQlicting	changes.	
When	I	went	to	rebase	(I	always	use	rebase	rather	than	merge	commits	because	it	allows	
me	to	deal	with	conQlicts	in	the	isolation	of	one	change.	This	is	why	it’s	important	to	me	that	
every	commit	have	only	one	change!),	one	branch	onto	the	other,	of	course,	I	end	up	with	
this	error:	

✦ ❯ git rebase main	
Auto-merging file	
CONFLICT (content): Merge conflict in file	

error: could not apply f611b6f... Uppercase	
Could not apply f611b6f... Uppercase	

To	resolve	this	conQlict,	I	run	git mergetool.	Because	of	the	git	conQiguration	above,	iit	
will	open	Neovim	with	these	four	different	diff	windows:	

	

There	are	three	windows	across	the	top	and	one	in	a	big	pane	(also	pain)	in	the	bottom.	

• The	upper-left	window	shows	the	“Local”	changes.	The	meaning	of	“local”	depends	
on	exactly	what	commands	you	used	to	get	into	the	conQlict	situation.	In	typical	
rebase	Qlows,	it	returns	to	“the	current	state	of	the	main	branch”.	So	when	there	is	a	
conQlict,	it	would	contain	“the	other	person’s	changes”,	so	“local”	doesn’t	seem	
applicable.	

• The	middle	window	contains	the	“common	ancestor”	or	“base”	of	the	changes.	
Which	is	to	say,	this	is	the	state	of	the	Qile	before	either	you	or	“the	other	person”	
made	any	changes.	This	window	is	not	commonly	described	in	merge-tool	tutorials,	
but	I	Qind	it	can	be	quite	helpful	when	trying	to	Qigure	out	what	changed	between	the	
base	and	each	of	the	two	side	windows.	

• The	right	window	contains	the	“Remote”	changes,	which,	like	local,	can	be	a	
misnomer.	In	rebase	Qlows,	it	usually	means	“the	changes	I	made	on	the	branch	I	am	
rebasing	onto	main.”	

• The	lower	window	contains	“the	current	state	of	the	Qile”,	which	at	the	time	the	
rebase	failed	includes	messy	conQlict	markers.	This	is	the	only	Qile	you	should	make	
edits	to.	

All	four	Qiles	will	feature	code	folding	if	there	are	long	sections	of	common	code.	Also,	if	you	
scroll	or	move	the	cursor	in	the	lower	Qile,	the	upper	Qiles	will	also	scroll	so	everything	stays	
in	sync,	and	an	underline	in	the	top	three	windows	will	indicate	which	line	the	diff	tool	
thinks	is	the	“current”	one	with	respect	to	the	cursor	position	in	the	lower	window.	

Most	rebase	Qlows	start	with	using	vag	and	:diffg	from	the	lower	window	to	make	it	
identical	to	one	of	the	upper	windows.	Then	you	would	use	diffget	to	get	hunks	from	the	
left	or	right	window,	depending	on	context.	You’ll	also	usually	have	to	do	some	manual	
editing	because	if	it	was	possible	to	automatically	get	all	the	changes,	git	would	not	have	
thrown	a	conQlict!	

The	problem	is,	:diffg	doesn’t	know	which	window	to	get	things	from	because	there	are	
multiple	windows	open:	

	

Instead,	we	need	to	use	the	command	:%diffg 2.	The	2	is	a	buffer	number.	When	you	run	
merge-tool	directly	from	the	command	line,	the	buffers	are	numbered	in	the	order	they	are	
open.	So	1	is	the	left-hand	buffer,	2	is	the	middle	one,	3	is	the	right-hand	one,	and	4	is	the	
lower	window.	If	you	aren’t	sure,	you	can	use	the	<Space><comma>	keybinding	to	show	the	
buffer	list:	

	

In	this	list,	the	Qirst	column	holds	the	buffer	number.	This	number	generally	increases	
monotonically	from	the	most	recent	time	Neovim	opened,	so	it	can	get	pretty	high	if	you’ve	
been	editing	for	a	while.	But	when	you	use	git mergetool,	it	typically	opens	a	brand	new	
Neovim	instance	and	1-4	are	expected.	

After	running	vag	and	the	:%diffg 2	command,	the	bottom	window	looks	the	same	as	the	
middle	window,	which	is	the	state	everything	was	before	either	branch	was	created.	If	I	
used	vag	and	then	:%diffg 1	it	would	look	the	same	as	main,	and	vag	followed	by	:
%diffg 3	would	make	it	look	the	same	as	my	branch.	Then	I	could	selectively	look	at	
differences	between	buffers	and	use	:diffg #	to	get	changes	from	the	left	or	right	one	
respectively.	

Merge	conQlicts	can	always	be	somewhat	stressful,	but	I	Qind	the	four	window	view	often	
makes	it	easier	to	understand	what	changed	and	why.	That	said,	I	only	reach	for	it	when	I’m	
in	a	particularly	knotty	merge	situation.	Normally,	I	use	the	git-conQlict.nvim	plugin.	

git-conflict.nvim

While	merge-tool	is	very	helpful	when	working	with	particularly	complicated	merges,	for	
simple	conQlicts,	I	usually	Qind	it	quicker	to	just	edit	the	Qile	with	the	conQlict	markers	in	it	
directly.	A	plugin	called	git-conflict.nvim	provides	syntax	highlighting	and	some	
keybindings	to	help	navigate	conQlicts.	

Set	it	up	with	a	conQig	something	like	this:	

return {	
 "akinsho/git-conflict.nvim",	
 lazy = false,	
 opts = {	
 default_mappings = {	
 ours = "<leader>ho",	
 theirs = "<leader>ht",	
 none = "<leaderh>0",	
 both = "<leaderhb",	
 next = "]x",	
 prev = "[x",	
 },	
 },	
 keys = {	
 {	
 "<leader>gx",	
 "<cmd>GitConflictListQf<cr>",	

 desc = "List Conflicts"	
 },	
 {	
 "<leader>gr",	
 "<cmd>GitConflictRefresh<cr>",	
 desc = "Refresh Conflicts"	
 },	
 },	
}	

I	use	the	<Space>h	preQix	that	I	set	up	previously	for	staging	hunks	and	add	a	few	new	
commands	to	it.	After	enabling	this	extension,	if	you	open	a	Qile	with	conQlicts,	it	highlights	
the	conQlict	markers	in	a	different	colour.	On	my	plaintext	sample	Qile	it	looks	like	this:	

	

The	conQlict	markers	include	the	“current”	(whatever	is	on	main)	code	above	and	the	“new”	
(whatever	is	being	rebased)	code	below	the	original	or	base	code	(before	either	change)	in	
the	middle.	

I	can	use	the]x	keybinding	to	quickly	jump	to	the	next	conQlict	(in	this	case	there	is	only	
one).	Then	I	can	use	one	of	the	following	keybindings	to	resolve	the	conQlict:	

• <Space>ho	Choose	the	top	version	
• <Space>ht	Choose	the	bottom	version	
• <Space>hb	Choose	both	

• <Spaceh0	Go	back	to	whatever	is	in	the	middle	

The	o	and	t	keybindings	are	hard	to	remember.	Technically	they	mean	“ours”	and	“theirs”,	
but	depending	on	which	order	you	did	a	merge	or	rebase,	it	doesn’t	always	semantically	
map	to	your	own	or	somebody	else’s	commit.	I	just	remember	that	o	is	before	t	in	the	
alphabet,	so	it	means	the	upper	change.	

In	all	cases,	but	especially	in	the	latter	two,	you	will	likely	need	to	do	some	manual	editing	
to	make	the	code	look	correct.	This	is	normal.	None	of	the	conQlict	management	extensions	
uses	AI	to	semantically	understand	what	the	changes	intended	to	do,	so	you	still	need	to	do	
that	part	yourself!	

About	ninety	percent	of	the	time,	this	plugin	is	all	I	need	to	resolve	a	conQlict.	I	only	use	the	
mergetool	when	things	are	particularly	hairy	or	complicated.	

Summary

This	chapter	introduced	a	lot	of	different	ways	of	interacting	with	git	and	version	control	
from	inside	LazyVim.	You	probably	won’t	use	all	of	it,	but	I	wanted	to	present	multiple	
options	so	you	can	decide	which	ones	work	best	for	you.	

Perhaps	you	want	to	use	Lazygit,	or	maybe	you	want	to	stay	in	the	editor	and	use	the	
functionality	that	git-signs	and	native	vim	diff	mode	provide.	Maybe	you	want	to	install	
some	extra	plugins	such	as	git-conflict.nvim	or	diffview.nvim	to	streamline	your	
experience	(others	you	might	want	to	look	at	include	Neogit	and	mini.git).	

Or	maybe	you	don’t	want	to	manage	this	stuff	from	your	editor	at	all	and	just	want	to	drop	
to	terminal	mode	and	use	git	or	a	wrapper	like	graphite.	Whatever	works	for	you,	
LazyVim	provides	the	integrations	you	need.	

In	the	next	chapter	we’ll	admit	that	it’s	not	2020	anymore	and	talk	about	ArtiQicial	
Intelligence.	

Chapter 16: Configuring Ar/ficial Intelligence

Chapter	16:	ConQiguring	ArtiQicial	Intelligence	-	LazyVim	for	Ambitious	Developers	

This	chapter	is	available	on	Patreon	and	will	be	made	available	here	sometime	after	July	17,	
2024.	

https://www.patreon.com/posts/chapter-16-107537562

Chapter 17: Debugging

Chapter	16:	Debugging	-	LazyVim	for	Ambitious	Developers	

This	chapter	is	available	on	Patreon	and	will	be	made	available	here	sometime	after	July	25,	
2024.	

Chapter 18: Tes/ng

Chapter	16:	Debugging	-	LazyVim	for	Ambitious	Developers	

This	chapter	is	available	on	Patreon	and	will	be	made	available	here	sometime	after	July	31,	
2024.

https://www.patreon.com/posts/chapter-17-107936612
https://www.patreon.com/posts/chapter-18-108303829

	Chapter 1: Installation
	Choosing a Terminal
	Setting Up Your Terminal Font
	Install Neovim
	Which Version should I install?
	Windows
	MacOS
	Linux

	Try Neovim Raw (If You Dare)
	Install LazyVim
	Start with a clean slate
	Clean up: Windows with Subsystem for Linux, MacOS, and Linux
	Clean Up: Windows without WSL
	Install other recommended dependencies
	Clone the starter template
	git clone: Windows with Subsystem for Linux, MacOS, and Linux
	git clone: Windows without WSL

	The Dashboard
	Lazy.nvim Plugin Manager
	A Note on Managing Dot Files
	Summary

	Chapter 2: What is Modal Editing, Anyway?
	Introduction to Modal Editing
	A note on Keybinding Mnemonics

	Visual Mode
	Command Mode
	Summary

	Chapter 3: Getting Around
	Seeking Text
	Scrolling the screen
	Z Mode

	The first rule of Vim
	Counting
	Find mode
	Moving by Words
	Moving by Words, Only BIGGER
	Line targets
	Jumping to specific lines
	Jump History
	Summary

	Chapter 4: Opening Files
	Introducing File Pickers
	The difference between “Root” and “cwd”
	Current Working Directory
	Root directory

	Fzf.lua
	The Neo-tree.nvim plugin
	The mini.files alternative
	Using mini.files
	Saving Filesystem Changes

	Summary

	Chapter 5: Configuration and Plugin Basics
	The Three Categories of Plugins in LazyVim
	Lazy Extras
	Disabling a Built-in Plugin
	Modifying Keybindings (example)
	Structure of a keys entry
	Customizing the mini.files Options

	Modifying Existing Options
	Installing third-party plugins
	Summary

	Chapter 6: Basic Editing
	The Vim Command Mental Model
	A Note on Insert Mode

	Deleting Text
	Changing Text
	Operating to end of the current line
	Operating on entire lines
	Some shortcuts for modifying individual characters
	Manipulating Case
	Repeating Commands
	Recording Commands
	Appending to a recording
	Playing Back a Recording

	Undo and Redo
	Summary

	Chapter 7: Objects and Operator-pending Mode
	Unimpaired Mode
	Jump by Reference
	Jump by language features
	Jump to end of indention
	Jumping to diagnostics
	Jumping to git revisions

	Text Objects
	Textual objects
	Quotes and Brackets
	Language features
	Git Hunks
	Next and last text object

	Seeking Surrounding Objects
	Seeking Surrounding Objects Remotely

	Operating on surrounding pairs
	Adding surrounding pair
	Delete surrounding pair
	Replace surrounding pair
	Navigate surrounding characters
	Highlighting surrounding characters
	Bonus: XML or HTML Tags
	Modifying the keybindings

	Summary

	Chapter 8: Clipboard, Registers, and Selection
	Pasting text
	Copying Text
	Selecting Text First
	Line-wise Visual Mode
	Block-wise Visual Mode

	Registers
	Clipboard registers
	The last yanked or last inserted text
	The delete (numbered) registers
	The current file’s name

	Recording to registers
	Editing recordings

	The yanky.nvim plugin
	Summary

	Chapter 9: Buffers and Layouts
	Some terminology
	Buffers
	Navigating between open buffers
	Closing Buffers

	Windows
	Creating Window Splits
	Creating Splits When Opening files
	Navigating between windows
	Closing a Window Split
	Resizing Windows

	Tabs
	Code Folding
	Sessions
	Summary

	Chapter 10: Programming Language Support
	The lang.* Lazy Extras
	Mason.nvim
	Validating Things Installed Cleanly
	Diagnostics
	Trouble and Quick Fix

	Code Actions
	Linting
	Formatting
	Configuring Non-standard LSPs
	Summary

	Chapter 11: Navigating Source Files
	Go To Definition
	Go To References
	Context-specific Help
	Listing symbols
	NeoTree also has a symbols outline
	…and so does Trouble!
	Context
	Navigating with (book)marks
	Summary

	Chapter 12: Searching…
	Search in current file
	Ignore case
	Regular expressions
	Search In Project
	Setting up a Telescope extension
	Using Telescope live grep args

	Summary

	Chapter 13: …and Replacing
	Substitute ranges
	Flags (Global and ignore case substitutions)
	Handy Substitute shortcuts
	Project-wide search and replace with Spectre
	Perform vim commands on multiple lines
	A note on multiple cursors
	The :norm command

	Command Line Editor
	Mixing :norm with recording
	The global command
	Summary

	Chapter 14: Miscellaneous Editing Tips
	Word counts
	Transposed characters
	Commenting and uncommenting code
	Incrementing and decrementing numbers
	The dial.nvim extra

	Changing indentation
	Reflowing text
	Filtering through external programs
	Abbreviations (and filetype configuration)
	Snippets
	Defining new snippets

	Summary

	Chapter 15: Source Control
	The Integrated Terminal (A rant)
	The Integrated Terminal (for real this time)
	Checking your git status
	With Telescope
	With Fzf.lua
	Other pickers

	Git Files in Neotree
	Status of the currently focused file
	Staging from the editor
	Lazygit
	Diff Mode
	Editing Diffs

	Configuring Vim diff as merge tool
	git-conflict.nvim
	Summary

	Chapter 16: Configuring Artificial Intelligence
	Chapter 17: Debugging
	Chapter 18: Testing

